MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbascl Structured version   Visualization version   GIF version

Theorem prdsbascl 17500
Description: An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsbasmpt2.k 𝐾 = (Base‘𝑅)
prdsbascl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
prdsbascl (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐾(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsbascl
StepHypRef Expression
1 prdsbasmpt2.y . . . . 5 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . . . 5 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . . . 5 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . . . 5 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . . . . 6 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 eqid 2726 . . . . . . 7 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
76fnmpt 6703 . . . . . 6 (∀𝑥𝐼 𝑅𝑋 → (𝑥𝐼𝑅) Fn 𝐼)
85, 7syl 17 . . . . 5 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
9 prdsbascl.f . . . . 5 (𝜑𝐹𝐵)
101, 2, 3, 4, 8, 9prdsbasfn 17488 . . . 4 (𝜑𝐹 Fn 𝐼)
11 dffn5 6963 . . . 4 (𝐹 Fn 𝐼𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
1210, 11sylib 217 . . 3 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
1312, 9eqeltrrd 2827 . 2 (𝜑 → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ 𝐵)
14 prdsbasmpt2.k . . 3 𝐾 = (Base‘𝑅)
151, 2, 3, 4, 5, 14prdsbasmpt2 17499 . 2 (𝜑 → ((𝑥𝐼 ↦ (𝐹𝑥)) ∈ 𝐵 ↔ ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾))
1613, 15mpbid 231 1 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3051  cmpt 5238   Fn wfn 6551  cfv 6556  (class class class)co 7426  Basecbs 17215  Xscprds 17462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-ixp 8929  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-dec 12732  df-uz 12877  df-fz 13541  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-mulr 17282  df-sca 17284  df-vsca 17285  df-ip 17286  df-tset 17287  df-ple 17288  df-ds 17290  df-hom 17292  df-cco 17293  df-prds 17464
This theorem is referenced by:  prdsdsval3  17502  prdsdsf  24367  prdsxmetlem  24368  prdsmet  24370  prdsbl  24494  prdsxmslem2  24532  prdsbnd  37496  prdsbnd2  37498  rrnequiv  37538
  Copyright terms: Public domain W3C validator