![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rehaus | Structured version Visualization version GIF version |
Description: The standard topology on the reals is Hausdorff. (Contributed by NM, 8-Mar-2007.) |
Ref | Expression |
---|---|
rehaus | ⊢ (topGen‘ran (,)) ∈ Haus |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | 1 | rexmet 22815 | . 2 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) |
3 | eqid 2771 | . . . 4 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
4 | 1, 3 | tgioo 22820 | . . 3 ⊢ (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
5 | 4 | methaus 22546 | . 2 ⊢ (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (topGen‘ran (,)) ∈ Haus) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Haus |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 × cxp 5248 ran crn 5251 ↾ cres 5252 ∘ ccom 5254 ‘cfv 6032 ℝcr 10138 − cmin 10469 (,)cioo 12381 abscabs 14183 topGenctg 16307 ∞Metcxmt 19947 MetOpencmopn 19952 Hauscha 21334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-cnex 10195 ax-resscn 10196 ax-1cn 10197 ax-icn 10198 ax-addcl 10199 ax-addrcl 10200 ax-mulcl 10201 ax-mulrcl 10202 ax-mulcom 10203 ax-addass 10204 ax-mulass 10205 ax-distr 10206 ax-i2m1 10207 ax-1ne0 10208 ax-1rid 10209 ax-rnegex 10210 ax-rrecex 10211 ax-cnre 10212 ax-pre-lttri 10213 ax-pre-lttrn 10214 ax-pre-ltadd 10215 ax-pre-mulgt0 10216 ax-pre-sup 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-pss 3740 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5824 df-ord 5870 df-on 5871 df-lim 5872 df-suc 5873 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-riota 6755 df-ov 6797 df-oprab 6798 df-mpt2 6799 df-om 7214 df-1st 7316 df-2nd 7317 df-wrecs 7560 df-recs 7622 df-rdg 7660 df-er 7897 df-map 8012 df-en 8111 df-dom 8112 df-sdom 8113 df-sup 8505 df-inf 8506 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 df-sub 10471 df-neg 10472 df-div 10888 df-nn 11224 df-2 11282 df-3 11283 df-n0 11496 df-z 11581 df-uz 11890 df-q 11993 df-rp 12037 df-xneg 12152 df-xadd 12153 df-xmul 12154 df-ioo 12385 df-icc 12388 df-seq 13010 df-exp 13069 df-cj 14048 df-re 14049 df-im 14050 df-sqrt 14184 df-abs 14185 df-topgen 16313 df-psmet 19954 df-xmet 19955 df-met 19956 df-bl 19957 df-mopn 19958 df-top 20920 df-topon 20937 df-bases 20972 df-haus 21341 |
This theorem is referenced by: rrhre 30406 poimirlem30 33773 sncldre 39730 dirkercncflem2 40839 |
Copyright terms: Public domain | W3C validator |