Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressply1mul | Structured version Visualization version GIF version |
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
ressply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
ressply1.b | ⊢ 𝐵 = (Base‘𝑈) |
ressply1.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressply1.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressply1mul | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | ressply1.h | . . 3 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | eqid 2737 | . . 3 ⊢ (1o mPoly 𝐻) = (1o mPoly 𝐻) | |
4 | ressply1.u | . . . 4 ⊢ 𝑈 = (Poly1‘𝐻) | |
5 | eqid 2737 | . . . 4 ⊢ (PwSer1‘𝐻) = (PwSer1‘𝐻) | |
6 | ressply1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
7 | 4, 5, 6 | ply1bas 21116 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝐻)) |
8 | 1on 8209 | . . . 4 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ On) |
10 | ressply1.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
11 | eqid 2737 | . . 3 ⊢ ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵) | |
12 | 1, 2, 3, 7, 9, 10, 11 | ressmplmul 20987 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘(1o mPoly 𝐻))𝑌) = (𝑋(.r‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)) |
13 | eqid 2737 | . . . 4 ⊢ (.r‘𝑈) = (.r‘𝑈) | |
14 | 4, 3, 13 | ply1mulr 21148 | . . 3 ⊢ (.r‘𝑈) = (.r‘(1o mPoly 𝐻)) |
15 | 14 | oveqi 7226 | . 2 ⊢ (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘(1o mPoly 𝐻))𝑌) |
16 | ressply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
17 | eqid 2737 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
18 | 16, 1, 17 | ply1mulr 21148 | . . . 4 ⊢ (.r‘𝑆) = (.r‘(1o mPoly 𝑅)) |
19 | 6 | fvexi 6731 | . . . . 5 ⊢ 𝐵 ∈ V |
20 | ressply1.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
21 | 20, 17 | ressmulr 16848 | . . . . 5 ⊢ (𝐵 ∈ V → (.r‘𝑆) = (.r‘𝑃)) |
22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑃) |
23 | eqid 2737 | . . . . . 6 ⊢ (.r‘(1o mPoly 𝑅)) = (.r‘(1o mPoly 𝑅)) | |
24 | 11, 23 | ressmulr 16848 | . . . . 5 ⊢ (𝐵 ∈ V → (.r‘(1o mPoly 𝑅)) = (.r‘((1o mPoly 𝑅) ↾s 𝐵))) |
25 | 19, 24 | ax-mp 5 | . . . 4 ⊢ (.r‘(1o mPoly 𝑅)) = (.r‘((1o mPoly 𝑅) ↾s 𝐵)) |
26 | 18, 22, 25 | 3eqtr3i 2773 | . . 3 ⊢ (.r‘𝑃) = (.r‘((1o mPoly 𝑅) ↾s 𝐵)) |
27 | 26 | oveqi 7226 | . 2 ⊢ (𝑋(.r‘𝑃)𝑌) = (𝑋(.r‘((1o mPoly 𝑅) ↾s 𝐵))𝑌) |
28 | 12, 15, 27 | 3eqtr4g 2803 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 Oncon0 6213 ‘cfv 6380 (class class class)co 7213 1oc1o 8195 Basecbs 16760 ↾s cress 16784 .rcmulr 16803 SubRingcsubrg 19796 mPoly cmpl 20865 PwSer1cps1 21096 Poly1cpl1 21098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-ofr 7470 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-seq 13575 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-tset 16821 df-ple 16822 df-0g 16946 df-gsum 16947 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-subg 18540 df-mgp 19505 df-ring 19564 df-subrg 19798 df-psr 20868 df-mpl 20870 df-opsr 20872 df-psr1 21101 df-ply1 21103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |