MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressply1mul Structured version   Visualization version   GIF version

Theorem ressply1mul 19805
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressply1.s 𝑆 = (Poly1𝑅)
ressply1.h 𝐻 = (𝑅s 𝑇)
ressply1.u 𝑈 = (Poly1𝐻)
ressply1.b 𝐵 = (Base‘𝑈)
ressply1.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressply1mul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem ressply1mul
StepHypRef Expression
1 eqid 2806 . . 3 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
2 ressply1.h . . 3 𝐻 = (𝑅s 𝑇)
3 eqid 2806 . . 3 (1𝑜 mPoly 𝐻) = (1𝑜 mPoly 𝐻)
4 ressply1.u . . . 4 𝑈 = (Poly1𝐻)
5 eqid 2806 . . . 4 (PwSer1𝐻) = (PwSer1𝐻)
6 ressply1.b . . . 4 𝐵 = (Base‘𝑈)
74, 5, 6ply1bas 19769 . . 3 𝐵 = (Base‘(1𝑜 mPoly 𝐻))
8 1on 7799 . . . 4 1𝑜 ∈ On
98a1i 11 . . 3 (𝜑 → 1𝑜 ∈ On)
10 ressply1.2 . . 3 (𝜑𝑇 ∈ (SubRing‘𝑅))
11 eqid 2806 . . 3 ((1𝑜 mPoly 𝑅) ↾s 𝐵) = ((1𝑜 mPoly 𝑅) ↾s 𝐵)
121, 2, 3, 7, 9, 10, 11ressmplmul 19663 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r‘(1𝑜 mPoly 𝐻))𝑌) = (𝑋(.r‘((1𝑜 mPoly 𝑅) ↾s 𝐵))𝑌))
13 eqid 2806 . . . 4 (.r𝑈) = (.r𝑈)
144, 3, 13ply1mulr 19801 . . 3 (.r𝑈) = (.r‘(1𝑜 mPoly 𝐻))
1514oveqi 6883 . 2 (𝑋(.r𝑈)𝑌) = (𝑋(.r‘(1𝑜 mPoly 𝐻))𝑌)
16 ressply1.s . . . . 5 𝑆 = (Poly1𝑅)
17 eqid 2806 . . . . 5 (.r𝑆) = (.r𝑆)
1816, 1, 17ply1mulr 19801 . . . 4 (.r𝑆) = (.r‘(1𝑜 mPoly 𝑅))
196fvexi 6418 . . . . 5 𝐵 ∈ V
20 ressply1.p . . . . . 6 𝑃 = (𝑆s 𝐵)
2120, 17ressmulr 16213 . . . . 5 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
2219, 21ax-mp 5 . . . 4 (.r𝑆) = (.r𝑃)
23 eqid 2806 . . . . . 6 (.r‘(1𝑜 mPoly 𝑅)) = (.r‘(1𝑜 mPoly 𝑅))
2411, 23ressmulr 16213 . . . . 5 (𝐵 ∈ V → (.r‘(1𝑜 mPoly 𝑅)) = (.r‘((1𝑜 mPoly 𝑅) ↾s 𝐵)))
2519, 24ax-mp 5 . . . 4 (.r‘(1𝑜 mPoly 𝑅)) = (.r‘((1𝑜 mPoly 𝑅) ↾s 𝐵))
2618, 22, 253eqtr3i 2836 . . 3 (.r𝑃) = (.r‘((1𝑜 mPoly 𝑅) ↾s 𝐵))
2726oveqi 6883 . 2 (𝑋(.r𝑃)𝑌) = (𝑋(.r‘((1𝑜 mPoly 𝑅) ↾s 𝐵))𝑌)
2812, 15, 273eqtr4g 2865 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  Vcvv 3391  Oncon0 5936  cfv 6097  (class class class)co 6870  1𝑜c1o 7785  Basecbs 16064  s cress 16065  .rcmulr 16150  SubRingcsubrg 18976   mPoly cmpl 19558  PwSer1cps1 19749  Poly1cpl1 19751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-of 7123  df-ofr 7124  df-om 7292  df-1st 7394  df-2nd 7395  df-supp 7526  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-2o 7793  df-oadd 7796  df-er 7975  df-map 8090  df-pm 8091  df-ixp 8142  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fsupp 8511  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-fz 12546  df-seq 13021  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-ple 16169  df-0g 16303  df-gsum 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-subg 17789  df-mgp 18688  df-ring 18747  df-subrg 18978  df-psr 19561  df-mpl 19563  df-opsr 19565  df-psr1 19754  df-ply1 19756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator