![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressply1mul | Structured version Visualization version GIF version |
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
ressply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
ressply1.b | ⊢ 𝐵 = (Base‘𝑈) |
ressply1.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressply1.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressply1mul | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2795 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | ressply1.h | . . 3 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | eqid 2795 | . . 3 ⊢ (1o mPoly 𝐻) = (1o mPoly 𝐻) | |
4 | ressply1.u | . . . 4 ⊢ 𝑈 = (Poly1‘𝐻) | |
5 | eqid 2795 | . . . 4 ⊢ (PwSer1‘𝐻) = (PwSer1‘𝐻) | |
6 | ressply1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
7 | 4, 5, 6 | ply1bas 20046 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝐻)) |
8 | 1on 7960 | . . . 4 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ On) |
10 | ressply1.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
11 | eqid 2795 | . . 3 ⊢ ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵) | |
12 | 1, 2, 3, 7, 9, 10, 11 | ressmplmul 19926 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘(1o mPoly 𝐻))𝑌) = (𝑋(.r‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)) |
13 | eqid 2795 | . . . 4 ⊢ (.r‘𝑈) = (.r‘𝑈) | |
14 | 4, 3, 13 | ply1mulr 20078 | . . 3 ⊢ (.r‘𝑈) = (.r‘(1o mPoly 𝐻)) |
15 | 14 | oveqi 7029 | . 2 ⊢ (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘(1o mPoly 𝐻))𝑌) |
16 | ressply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
17 | eqid 2795 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
18 | 16, 1, 17 | ply1mulr 20078 | . . . 4 ⊢ (.r‘𝑆) = (.r‘(1o mPoly 𝑅)) |
19 | 6 | fvexi 6552 | . . . . 5 ⊢ 𝐵 ∈ V |
20 | ressply1.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
21 | 20, 17 | ressmulr 16454 | . . . . 5 ⊢ (𝐵 ∈ V → (.r‘𝑆) = (.r‘𝑃)) |
22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑃) |
23 | eqid 2795 | . . . . . 6 ⊢ (.r‘(1o mPoly 𝑅)) = (.r‘(1o mPoly 𝑅)) | |
24 | 11, 23 | ressmulr 16454 | . . . . 5 ⊢ (𝐵 ∈ V → (.r‘(1o mPoly 𝑅)) = (.r‘((1o mPoly 𝑅) ↾s 𝐵))) |
25 | 19, 24 | ax-mp 5 | . . . 4 ⊢ (.r‘(1o mPoly 𝑅)) = (.r‘((1o mPoly 𝑅) ↾s 𝐵)) |
26 | 18, 22, 25 | 3eqtr3i 2827 | . . 3 ⊢ (.r‘𝑃) = (.r‘((1o mPoly 𝑅) ↾s 𝐵)) |
27 | 26 | oveqi 7029 | . 2 ⊢ (𝑋(.r‘𝑃)𝑌) = (𝑋(.r‘((1o mPoly 𝑅) ↾s 𝐵))𝑌) |
28 | 12, 15, 27 | 3eqtr4g 2856 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 Oncon0 6066 ‘cfv 6225 (class class class)co 7016 1oc1o 7946 Basecbs 16312 ↾s cress 16313 .rcmulr 16395 SubRingcsubrg 19221 mPoly cmpl 19821 PwSer1cps1 20026 Poly1cpl1 20028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-ofr 7268 df-om 7437 df-1st 7545 df-2nd 7546 df-supp 7682 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-er 8139 df-map 8258 df-pm 8259 df-ixp 8311 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fsupp 8680 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-seq 13220 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-sca 16410 df-vsca 16411 df-tset 16413 df-ple 16414 df-0g 16544 df-gsum 16545 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-grp 17864 df-minusg 17865 df-subg 18030 df-mgp 18930 df-ring 18989 df-subrg 19223 df-psr 19824 df-mpl 19826 df-opsr 19828 df-psr1 20031 df-ply1 20033 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |