| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risefallfac | Structured version Visualization version GIF version | ||
| Description: A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018.) |
| Ref | Expression |
|---|---|
| risefallfac | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl 11382 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝑋 ∈ ℂ) |
| 3 | elfznn 13475 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
| 4 | nnm1nn0 12444 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0) |
| 6 | 5 | nn0cnd 12466 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℂ) |
| 7 | subcl 11381 | . . . . . 6 ⊢ ((-𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) | |
| 8 | 2, 6, 7 | syl2an 596 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) |
| 9 | 8 | mulm1d 11591 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-1 · (-𝑋 − (𝑘 − 1))) = -(-𝑋 − (𝑘 − 1))) |
| 10 | simpll 766 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) | |
| 11 | 6 | adantl 481 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℂ) |
| 12 | 10, 11 | negdi2d 11508 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -(𝑋 + (𝑘 − 1)) = (-𝑋 − (𝑘 − 1))) |
| 13 | 12 | negeqd 11376 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = -(-𝑋 − (𝑘 − 1))) |
| 14 | simpl 482 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) | |
| 15 | addcl 11110 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (𝑋 + (𝑘 − 1)) ∈ ℂ) | |
| 16 | 14, 6, 15 | syl2an 596 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) ∈ ℂ) |
| 17 | 16 | negnegd 11485 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = (𝑋 + (𝑘 − 1))) |
| 18 | 9, 13, 17 | 3eqtr2rd 2771 | . . 3 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) = (-1 · (-𝑋 − (𝑘 − 1)))) |
| 19 | 18 | prodeq2dv 15848 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
| 20 | risefacval2 15936 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1))) | |
| 21 | fzfi 13898 | . . . . . . 7 ⊢ (1...𝑁) ∈ Fin | |
| 22 | neg1cn 12132 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 23 | fprodconst 15904 | . . . . . . 7 ⊢ (((1...𝑁) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁)))) | |
| 24 | 21, 22, 23 | mp2an 692 | . . . . . 6 ⊢ ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁))) |
| 25 | hashfz1 14272 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | |
| 26 | 25 | oveq2d 7369 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(♯‘(1...𝑁))) = (-1↑𝑁)) |
| 27 | 24, 26 | eqtr2id 2777 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
| 29 | fallfacval2 15937 | . . . . 5 ⊢ ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) | |
| 30 | 1, 29 | sylan 580 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) |
| 31 | 28, 30 | oveq12d 7371 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
| 32 | fzfid 13899 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1...𝑁) ∈ Fin) | |
| 33 | 22 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -1 ∈ ℂ) |
| 34 | 32, 33, 8 | fprodmul 15886 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1))) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
| 35 | 31, 34 | eqtr4d 2767 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
| 36 | 19, 20, 35 | 3eqtr4d 2774 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℂcc 11026 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11366 -cneg 11367 ℕcn 12147 ℕ0cn0 12403 ...cfz 13429 ↑cexp 13987 ♯chash 14256 ∏cprod 15829 FallFac cfallfac 15930 RiseFac crisefac 15931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-prod 15830 df-risefac 15932 df-fallfac 15933 |
| This theorem is referenced by: fallrisefac 15951 0risefac 15964 binomrisefac 15968 |
| Copyright terms: Public domain | W3C validator |