![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > risefallfac | Structured version Visualization version GIF version |
Description: A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018.) |
Ref | Expression |
---|---|
risefallfac | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11499 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
2 | 1 | adantr 479 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝑋 ∈ ℂ) |
3 | elfznn 13576 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
4 | nnm1nn0 12557 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0) |
6 | 5 | nn0cnd 12578 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℂ) |
7 | subcl 11498 | . . . . . 6 ⊢ ((-𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) | |
8 | 2, 6, 7 | syl2an 594 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) |
9 | 8 | mulm1d 11705 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-1 · (-𝑋 − (𝑘 − 1))) = -(-𝑋 − (𝑘 − 1))) |
10 | simpll 765 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) | |
11 | 6 | adantl 480 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℂ) |
12 | 10, 11 | negdi2d 11624 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -(𝑋 + (𝑘 − 1)) = (-𝑋 − (𝑘 − 1))) |
13 | 12 | negeqd 11493 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = -(-𝑋 − (𝑘 − 1))) |
14 | simpl 481 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) | |
15 | addcl 11229 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (𝑋 + (𝑘 − 1)) ∈ ℂ) | |
16 | 14, 6, 15 | syl2an 594 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) ∈ ℂ) |
17 | 16 | negnegd 11601 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = (𝑋 + (𝑘 − 1))) |
18 | 9, 13, 17 | 3eqtr2rd 2773 | . . 3 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) = (-1 · (-𝑋 − (𝑘 − 1)))) |
19 | 18 | prodeq2dv 15918 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
20 | risefacval2 16005 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1))) | |
21 | fzfi 13984 | . . . . . . 7 ⊢ (1...𝑁) ∈ Fin | |
22 | neg1cn 12370 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
23 | fprodconst 15973 | . . . . . . 7 ⊢ (((1...𝑁) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁)))) | |
24 | 21, 22, 23 | mp2an 690 | . . . . . 6 ⊢ ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁))) |
25 | hashfz1 14356 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | |
26 | 25 | oveq2d 7430 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(♯‘(1...𝑁))) = (-1↑𝑁)) |
27 | 24, 26 | eqtr2id 2779 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
28 | 27 | adantl 480 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
29 | fallfacval2 16006 | . . . . 5 ⊢ ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) | |
30 | 1, 29 | sylan 578 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) |
31 | 28, 30 | oveq12d 7432 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
32 | fzfid 13985 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1...𝑁) ∈ Fin) | |
33 | 22 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -1 ∈ ℂ) |
34 | 32, 33, 8 | fprodmul 15955 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1))) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
35 | 31, 34 | eqtr4d 2769 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
36 | 19, 20, 35 | 3eqtr4d 2776 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ‘cfv 6544 (class class class)co 7414 Fincfn 8964 ℂcc 11145 1c1 11148 + caddc 11150 · cmul 11152 − cmin 11483 -cneg 11484 ℕcn 12256 ℕ0cn0 12516 ...cfz 13530 ↑cexp 14073 ♯chash 14340 ∏cprod 15900 FallFac cfallfac 15999 RiseFac crisefac 16000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-inf2 9675 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9476 df-oi 9544 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-n0 12517 df-z 12603 df-uz 12867 df-rp 13021 df-fz 13531 df-fzo 13674 df-seq 14014 df-exp 14074 df-hash 14341 df-cj 15097 df-re 15098 df-im 15099 df-sqrt 15233 df-abs 15234 df-clim 15483 df-prod 15901 df-risefac 16001 df-fallfac 16002 |
This theorem is referenced by: fallrisefac 16020 0risefac 16033 binomrisefac 16037 |
Copyright terms: Public domain | W3C validator |