| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risefallfac | Structured version Visualization version GIF version | ||
| Description: A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018.) |
| Ref | Expression |
|---|---|
| risefallfac | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl 11355 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝑋 ∈ ℂ) |
| 3 | elfznn 13448 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
| 4 | nnm1nn0 12417 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0) |
| 6 | 5 | nn0cnd 12439 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℂ) |
| 7 | subcl 11354 | . . . . . 6 ⊢ ((-𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) | |
| 8 | 2, 6, 7 | syl2an 596 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) |
| 9 | 8 | mulm1d 11564 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-1 · (-𝑋 − (𝑘 − 1))) = -(-𝑋 − (𝑘 − 1))) |
| 10 | simpll 766 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) | |
| 11 | 6 | adantl 481 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℂ) |
| 12 | 10, 11 | negdi2d 11481 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -(𝑋 + (𝑘 − 1)) = (-𝑋 − (𝑘 − 1))) |
| 13 | 12 | negeqd 11349 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = -(-𝑋 − (𝑘 − 1))) |
| 14 | simpl 482 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) | |
| 15 | addcl 11083 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (𝑋 + (𝑘 − 1)) ∈ ℂ) | |
| 16 | 14, 6, 15 | syl2an 596 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) ∈ ℂ) |
| 17 | 16 | negnegd 11458 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = (𝑋 + (𝑘 − 1))) |
| 18 | 9, 13, 17 | 3eqtr2rd 2773 | . . 3 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) = (-1 · (-𝑋 − (𝑘 − 1)))) |
| 19 | 18 | prodeq2dv 15824 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
| 20 | risefacval2 15912 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1))) | |
| 21 | fzfi 13874 | . . . . . . 7 ⊢ (1...𝑁) ∈ Fin | |
| 22 | neg1cn 12105 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 23 | fprodconst 15880 | . . . . . . 7 ⊢ (((1...𝑁) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁)))) | |
| 24 | 21, 22, 23 | mp2an 692 | . . . . . 6 ⊢ ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁))) |
| 25 | hashfz1 14248 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | |
| 26 | 25 | oveq2d 7357 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(♯‘(1...𝑁))) = (-1↑𝑁)) |
| 27 | 24, 26 | eqtr2id 2779 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
| 29 | fallfacval2 15913 | . . . . 5 ⊢ ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) | |
| 30 | 1, 29 | sylan 580 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) |
| 31 | 28, 30 | oveq12d 7359 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
| 32 | fzfid 13875 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1...𝑁) ∈ Fin) | |
| 33 | 22 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -1 ∈ ℂ) |
| 34 | 32, 33, 8 | fprodmul 15862 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1))) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
| 35 | 31, 34 | eqtr4d 2769 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
| 36 | 19, 20, 35 | 3eqtr4d 2776 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 ℂcc 10999 1c1 11002 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 ℕcn 12120 ℕ0cn0 12376 ...cfz 13402 ↑cexp 13963 ♯chash 14232 ∏cprod 15805 FallFac cfallfac 15906 RiseFac crisefac 15907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-prod 15806 df-risefac 15908 df-fallfac 15909 |
| This theorem is referenced by: fallrisefac 15927 0risefac 15940 binomrisefac 15944 |
| Copyright terms: Public domain | W3C validator |