MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  risefallfac Structured version   Visualization version   GIF version

Theorem risefallfac 15966
Description: A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018.)
Assertion
Ref Expression
risefallfac ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁)))

Proof of Theorem risefallfac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 negcl 11397 . . . . . . 7 (𝑋 ∈ ℂ → -𝑋 ∈ ℂ)
21adantr 480 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝑋 ∈ ℂ)
3 elfznn 13490 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
4 nnm1nn0 12459 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
53, 4syl 17 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0)
65nn0cnd 12481 . . . . . 6 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℂ)
7 subcl 11396 . . . . . 6 ((-𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (-𝑋 − (𝑘 − 1)) ∈ ℂ)
82, 6, 7syl2an 596 . . . . 5 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-𝑋 − (𝑘 − 1)) ∈ ℂ)
98mulm1d 11606 . . . 4 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-1 · (-𝑋 − (𝑘 − 1))) = -(-𝑋 − (𝑘 − 1)))
10 simpll 766 . . . . . 6 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
116adantl 481 . . . . . 6 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℂ)
1210, 11negdi2d 11523 . . . . 5 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -(𝑋 + (𝑘 − 1)) = (-𝑋 − (𝑘 − 1)))
1312negeqd 11391 . . . 4 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = -(-𝑋 − (𝑘 − 1)))
14 simpl 482 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ)
15 addcl 11126 . . . . . 6 ((𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (𝑋 + (𝑘 − 1)) ∈ ℂ)
1614, 6, 15syl2an 596 . . . . 5 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) ∈ ℂ)
1716negnegd 11500 . . . 4 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = (𝑋 + (𝑘 − 1)))
189, 13, 173eqtr2rd 2771 . . 3 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) = (-1 · (-𝑋 − (𝑘 − 1))))
1918prodeq2dv 15864 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1))))
20 risefacval2 15952 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1)))
21 fzfi 13913 . . . . . . 7 (1...𝑁) ∈ Fin
22 neg1cn 12147 . . . . . . 7 -1 ∈ ℂ
23 fprodconst 15920 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁))))
2421, 22, 23mp2an 692 . . . . . 6 𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁)))
25 hashfz1 14287 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2625oveq2d 7385 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(♯‘(1...𝑁))) = (-1↑𝑁))
2724, 26eqtr2id 2777 . . . . 5 (𝑁 ∈ ℕ0 → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1)
2827adantl 481 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1)
29 fallfacval2 15953 . . . . 5 ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))
301, 29sylan 580 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))
3128, 30oveq12d 7387 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))))
32 fzfid 13914 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1...𝑁) ∈ Fin)
3322a1i 11 . . . 4 (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -1 ∈ ℂ)
3432, 33, 8fprodmul 15902 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1))) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))))
3531, 34eqtr4d 2767 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1))))
3619, 20, 353eqtr4d 2774 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382  cn 12162  0cn0 12418  ...cfz 13444  cexp 14002  chash 14271  cprod 15845   FallFac cfallfac 15946   RiseFac crisefac 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-risefac 15948  df-fallfac 15949
This theorem is referenced by:  fallrisefac  15967  0risefac  15980  binomrisefac  15984
  Copyright terms: Public domain W3C validator