Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsmscl | Structured version Visualization version GIF version |
Description: A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tsmscl.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmscl.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmscl.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsmscl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmscl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tsmscl | ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmscl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2736 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
3 | eqid 2736 | . . . 4 ⊢ (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin) | |
4 | tsmscl.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | tsmscl.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
6 | tsmscl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | tsmscl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | eltsms 23382 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑤 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑤 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑤))))) |
9 | simpl 483 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ ∀𝑤 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑤 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑤))) → 𝑥 ∈ 𝐵) | |
10 | 8, 9 | syl6bi 252 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ 𝐵)) |
11 | 10 | ssrdv 3937 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4546 ↾ cres 5616 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 Fincfn 8796 Basecbs 17001 TopOpenctopn 17221 Σg cgsu 17240 CMndccmn 19473 TopSpctps 22179 tsums ctsu 23375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-fzo 13476 df-seq 13815 df-hash 14138 df-0g 17241 df-gsum 17242 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-cntz 19011 df-cmn 19475 df-fbas 20692 df-fg 20693 df-top 22141 df-topon 22158 df-topsp 22180 df-ntr 22269 df-nei 22347 df-fil 23095 df-fm 23187 df-flim 23188 df-flf 23189 df-tsms 23376 |
This theorem is referenced by: tsmsmhm 23395 tsmsadd 23396 tsmssub 23398 tgptsmscls 23399 tgptsmscld 23400 taylfvallem 25615 esumcl 32237 |
Copyright terms: Public domain | W3C validator |