Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsubsticc Structured version   Visualization version   GIF version

Theorem itgsubsticc 45960
Description: Integration by u-substitution. The main difference with respect to itgsubst 26116 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsubsticc.1 (𝜑𝑋 ∈ ℝ)
itgsubsticc.2 (𝜑𝑌 ∈ ℝ)
itgsubsticc.3 (𝜑𝑋𝑌)
itgsubsticc.4 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
itgsubsticc.5 (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ))
itgsubsticc.6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
itgsubsticc.7 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
itgsubsticc.8 (𝑢 = 𝐴𝐶 = 𝐸)
itgsubsticc.9 (𝑥 = 𝑋𝐴 = 𝐾)
itgsubsticc.10 (𝑥 = 𝑌𝐴 = 𝐿)
itgsubsticc.11 (𝜑𝐾 ∈ ℝ)
itgsubsticc.12 (𝜑𝐿 ∈ ℝ)
Assertion
Ref Expression
itgsubsticc (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Distinct variable groups:   𝑢,𝐴   𝑥,𝐶   𝑢,𝐸   𝑢,𝐾,𝑥   𝑢,𝐿,𝑥   𝑢,𝑋,𝑥   𝑢,𝑌,𝑥   𝜑,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑢)   𝐶(𝑢)   𝐸(𝑥)

Proof of Theorem itgsubsticc
StepHypRef Expression
1 eqid 2737 . 2 (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)
2 eqid 2737 . 2 (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿))))
3 itgsubsticc.1 . 2 (𝜑𝑋 ∈ ℝ)
4 itgsubsticc.2 . 2 (𝜑𝑌 ∈ ℝ)
5 itgsubsticc.3 . 2 (𝜑𝑋𝑌)
6 itgsubsticc.4 . 2 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)))
7 itgsubsticc.6 . 2 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1))
8 itgsubsticc.5 . 2 (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ))
9 itgsubsticc.11 . 2 (𝜑𝐾 ∈ ℝ)
10 itgsubsticc.12 . 2 (𝜑𝐿 ∈ ℝ)
11 eqidd 2738 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴))
12 itgsubsticc.10 . . . . . . 7 (𝑥 = 𝑌𝐴 = 𝐿)
1312adantl 481 . . . . . 6 ((𝜑𝑥 = 𝑌) → 𝐴 = 𝐿)
143rexrd 11318 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
154rexrd 11318 . . . . . . 7 (𝜑𝑌 ∈ ℝ*)
16 ubicc2 13511 . . . . . . 7 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
1714, 15, 5, 16syl3anc 1372 . . . . . 6 (𝜑𝑌 ∈ (𝑋[,]𝑌))
1811, 13, 17, 10fvmptd 7030 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) = 𝐿)
19 cncff 24944 . . . . . . 7 ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
206, 19syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿))
2120, 17ffvelcdmd 7112 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) ∈ (𝐾[,]𝐿))
2218, 21eqeltrrd 2842 . . . 4 (𝜑𝐿 ∈ (𝐾[,]𝐿))
23 elicc2 13458 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾𝐿𝐿𝐿)))
249, 10, 23syl2anc 584 . . . 4 (𝜑 → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾𝐿𝐿𝐿)))
2522, 24mpbid 232 . . 3 (𝜑 → (𝐿 ∈ ℝ ∧ 𝐾𝐿𝐿𝐿))
2625simp2d 1144 . 2 (𝜑𝐾𝐿)
27 itgsubsticc.7 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵))
28 itgsubsticc.8 . 2 (𝑢 = 𝐴𝐶 = 𝐸)
29 itgsubsticc.9 . 2 (𝑥 = 𝑋𝐴 = 𝐾)
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 26, 27, 28, 29, 12itgsubsticclem 45959 1 (𝜑 → ⨜[𝐾𝐿]𝐶 d𝑢 = ⨜[𝑋𝑌](𝐸 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1539  wcel 2108  cin 3965  ifcif 4534   class class class wbr 5151  cmpt 5234  wf 6565  cfv 6569  (class class class)co 7438  cc 11160  cr 11161   · cmul 11167  *cxr 11301   < clt 11302  cle 11303  (,)cioo 13393  [,]cicc 13396  cnccncf 24927  𝐿1cibl 25677  cdit 25907   D cdv 25924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cc 10482  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-addf 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-symdif 4262  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-disj 5119  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-ofr 7705  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-omul 8519  df-er 8753  df-map 8876  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-fi 9458  df-sup 9489  df-inf 9490  df-oi 9557  df-dju 9948  df-card 9986  df-acn 9989  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ioo 13397  df-ioc 13398  df-ico 13399  df-icc 13400  df-fz 13554  df-fzo 13701  df-fl 13838  df-mod 13916  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15729  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-rest 17478  df-topn 17479  df-0g 17497  df-gsum 17498  df-topgen 17499  df-pt 17500  df-prds 17503  df-xrs 17558  df-qtop 17563  df-imas 17564  df-xps 17566  df-mre 17640  df-mrc 17641  df-acs 17643  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-cnfld 21392  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-lp 23169  df-perf 23170  df-cn 23260  df-cnp 23261  df-haus 23348  df-cmp 23420  df-tx 23595  df-hmeo 23788  df-fil 23879  df-fm 23971  df-flim 23972  df-flf 23973  df-xms 24355  df-ms 24356  df-tms 24357  df-cncf 24929  df-ovol 25524  df-vol 25525  df-mbf 25679  df-itg1 25680  df-itg2 25681  df-ibl 25682  df-itg 25683  df-0p 25730  df-ditg 25908  df-limc 25927  df-dv 25928
This theorem is referenced by:  itgiccshift  45964  itgperiod  45965  itgsbtaddcnst  45966
  Copyright terms: Public domain W3C validator