Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgsubsticc | Structured version Visualization version GIF version |
Description: Integration by u-substitution. The main difference with respect to itgsubst 25201 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
itgsubsticc.1 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
itgsubsticc.2 | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
itgsubsticc.3 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
itgsubsticc.4 | ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) |
itgsubsticc.5 | ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) |
itgsubsticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) |
itgsubsticc.7 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
itgsubsticc.8 | ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) |
itgsubsticc.9 | ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) |
itgsubsticc.10 | ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) |
itgsubsticc.11 | ⊢ (𝜑 → 𝐾 ∈ ℝ) |
itgsubsticc.12 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
Ref | Expression |
---|---|
itgsubsticc | ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) | |
2 | eqid 2738 | . 2 ⊢ (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) | |
3 | itgsubsticc.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
4 | itgsubsticc.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
5 | itgsubsticc.3 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
6 | itgsubsticc.4 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) | |
7 | itgsubsticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) | |
8 | itgsubsticc.5 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) | |
9 | itgsubsticc.11 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ) | |
10 | itgsubsticc.12 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
11 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) | |
12 | itgsubsticc.10 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) | |
13 | 12 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝐴 = 𝐿) |
14 | 3 | rexrd 11013 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
15 | 4 | rexrd 11013 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
16 | ubicc2 13185 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ (𝑋[,]𝑌)) | |
17 | 14, 15, 5, 16 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑋[,]𝑌)) |
18 | 11, 13, 17, 10 | fvmptd 6875 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) = 𝐿) |
19 | cncff 24044 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) | |
20 | 6, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) |
21 | 20, 17 | ffvelrnd 6955 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) ∈ (𝐾[,]𝐿)) |
22 | 18, 21 | eqeltrrd 2840 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝐾[,]𝐿)) |
23 | elicc2 13132 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿))) | |
24 | 9, 10, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿))) |
25 | 22, 24 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿)) |
26 | 25 | simp2d 1142 | . 2 ⊢ (𝜑 → 𝐾 ≤ 𝐿) |
27 | itgsubsticc.7 | . 2 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) | |
28 | itgsubsticc.8 | . 2 ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) | |
29 | itgsubsticc.9 | . 2 ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) | |
30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 26, 27, 28, 29, 12 | itgsubsticclem 43475 | 1 ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ifcif 4460 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6423 ‘cfv 6427 (class class class)co 7268 ℂcc 10857 ℝcr 10858 · cmul 10864 ℝ*cxr 10996 < clt 10997 ≤ cle 10998 (,)cioo 13067 [,]cicc 13070 –cn→ccncf 24027 𝐿1cibl 24769 ⨜cdit 24998 D cdv 25015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-inf2 9387 ax-cc 10179 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 ax-addf 10938 ax-mulf 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-symdif 4177 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7704 df-1st 7821 df-2nd 7822 df-supp 7966 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-2o 8286 df-oadd 8289 df-omul 8290 df-er 8486 df-map 8605 df-pm 8606 df-ixp 8674 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-fsupp 9117 df-fi 9158 df-sup 9189 df-inf 9190 df-oi 9257 df-dju 9647 df-card 9685 df-acn 9688 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-uz 12571 df-q 12677 df-rp 12719 df-xneg 12836 df-xadd 12837 df-xmul 12838 df-ioo 13071 df-ioc 13072 df-ico 13073 df-icc 13074 df-fz 13228 df-fzo 13371 df-fl 13500 df-mod 13578 df-seq 13710 df-exp 13771 df-hash 14033 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 df-limsup 15168 df-clim 15185 df-rlim 15186 df-sum 15386 df-struct 16836 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-ress 16930 df-plusg 16963 df-mulr 16964 df-starv 16965 df-sca 16966 df-vsca 16967 df-ip 16968 df-tset 16969 df-ple 16970 df-ds 16972 df-unif 16973 df-hom 16974 df-cco 16975 df-rest 17121 df-topn 17122 df-0g 17140 df-gsum 17141 df-topgen 17142 df-pt 17143 df-prds 17146 df-xrs 17201 df-qtop 17206 df-imas 17207 df-xps 17209 df-mre 17283 df-mrc 17284 df-acs 17286 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-submnd 18419 df-mulg 18689 df-cntz 18911 df-cmn 19376 df-psmet 20577 df-xmet 20578 df-met 20579 df-bl 20580 df-mopn 20581 df-fbas 20582 df-fg 20583 df-cnfld 20586 df-top 22031 df-topon 22048 df-topsp 22070 df-bases 22084 df-cld 22158 df-ntr 22159 df-cls 22160 df-nei 22237 df-lp 22275 df-perf 22276 df-cn 22366 df-cnp 22367 df-haus 22454 df-cmp 22526 df-tx 22701 df-hmeo 22894 df-fil 22985 df-fm 23077 df-flim 23078 df-flf 23079 df-xms 23461 df-ms 23462 df-tms 23463 df-cncf 24029 df-ovol 24616 df-vol 24617 df-mbf 24771 df-itg1 24772 df-itg2 24773 df-ibl 24774 df-itg 24775 df-0p 24822 df-ditg 24999 df-limc 25018 df-dv 25019 |
This theorem is referenced by: itgiccshift 43480 itgperiod 43481 itgsbtaddcnst 43482 |
Copyright terms: Public domain | W3C validator |