| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgsubsticc | Structured version Visualization version GIF version | ||
| Description: Integration by u-substitution. The main difference with respect to itgsubst 25993 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| itgsubsticc.1 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| itgsubsticc.2 | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| itgsubsticc.3 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| itgsubsticc.4 | ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) |
| itgsubsticc.5 | ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) |
| itgsubsticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) |
| itgsubsticc.7 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
| itgsubsticc.8 | ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) |
| itgsubsticc.9 | ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) |
| itgsubsticc.10 | ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) |
| itgsubsticc.11 | ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| itgsubsticc.12 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| Ref | Expression |
|---|---|
| itgsubsticc | ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) | |
| 2 | eqid 2733 | . 2 ⊢ (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) | |
| 3 | itgsubsticc.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 4 | itgsubsticc.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 5 | itgsubsticc.3 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 6 | itgsubsticc.4 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) | |
| 7 | itgsubsticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) | |
| 8 | itgsubsticc.5 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) | |
| 9 | itgsubsticc.11 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ) | |
| 10 | itgsubsticc.12 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
| 11 | eqidd 2734 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) | |
| 12 | itgsubsticc.10 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) | |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝐴 = 𝐿) |
| 14 | 3 | rexrd 11172 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
| 15 | 4 | rexrd 11172 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
| 16 | ubicc2 13375 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ (𝑋[,]𝑌)) | |
| 17 | 14, 15, 5, 16 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑋[,]𝑌)) |
| 18 | 11, 13, 17, 10 | fvmptd 6945 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) = 𝐿) |
| 19 | cncff 24823 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) | |
| 20 | 6, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) |
| 21 | 20, 17 | ffvelcdmd 7027 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) ∈ (𝐾[,]𝐿)) |
| 22 | 18, 21 | eqeltrrd 2834 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝐾[,]𝐿)) |
| 23 | elicc2 13321 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿))) | |
| 24 | 9, 10, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿))) |
| 25 | 22, 24 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿)) |
| 26 | 25 | simp2d 1143 | . 2 ⊢ (𝜑 → 𝐾 ≤ 𝐿) |
| 27 | itgsubsticc.7 | . 2 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) | |
| 28 | itgsubsticc.8 | . 2 ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) | |
| 29 | itgsubsticc.9 | . 2 ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) | |
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 26, 27, 28, 29, 12 | itgsubsticclem 46087 | 1 ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3898 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 ℝcr 11015 · cmul 11021 ℝ*cxr 11155 < clt 11156 ≤ cle 11157 (,)cioo 13255 [,]cicc 13258 –cn→ccncf 24806 𝐿1cibl 25555 ⨜cdit 25784 D cdv 25801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cc 10336 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-symdif 4204 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-dju 9804 df-card 9842 df-acn 9845 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ioc 13260 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-limsup 15388 df-clim 15405 df-rlim 15406 df-sum 15604 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-xrs 17416 df-qtop 17421 df-imas 17422 df-xps 17424 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-mulg 18991 df-cntz 19239 df-cmn 19704 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-lp 23061 df-perf 23062 df-cn 23152 df-cnp 23153 df-haus 23240 df-cmp 23312 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24245 df-ms 24246 df-tms 24247 df-cncf 24808 df-ovol 25402 df-vol 25403 df-mbf 25557 df-itg1 25558 df-itg2 25559 df-ibl 25560 df-itg 25561 df-0p 25608 df-ditg 25785 df-limc 25804 df-dv 25805 |
| This theorem is referenced by: itgiccshift 46092 itgperiod 46093 itgsbtaddcnst 46094 |
| Copyright terms: Public domain | W3C validator |