| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgsubsticc | Structured version Visualization version GIF version | ||
| Description: Integration by u-substitution. The main difference with respect to itgsubst 25976 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| itgsubsticc.1 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| itgsubsticc.2 | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| itgsubsticc.3 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| itgsubsticc.4 | ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) |
| itgsubsticc.5 | ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) |
| itgsubsticc.6 | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) |
| itgsubsticc.7 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) |
| itgsubsticc.8 | ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) |
| itgsubsticc.9 | ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) |
| itgsubsticc.10 | ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) |
| itgsubsticc.11 | ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| itgsubsticc.12 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| Ref | Expression |
|---|---|
| itgsubsticc | ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) | |
| 2 | eqid 2730 | . 2 ⊢ (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝑢), if(𝑢 < 𝐾, ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐾), ((𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶)‘𝐿)))) | |
| 3 | itgsubsticc.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 4 | itgsubsticc.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 5 | itgsubsticc.3 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 6 | itgsubsticc.4 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) | |
| 7 | itgsubsticc.6 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) | |
| 8 | itgsubsticc.5 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) | |
| 9 | itgsubsticc.11 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℝ) | |
| 10 | itgsubsticc.12 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
| 11 | eqidd 2731 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) = (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) | |
| 12 | itgsubsticc.10 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) | |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝐴 = 𝐿) |
| 14 | 3 | rexrd 11154 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
| 15 | 4 | rexrd 11154 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
| 16 | ubicc2 13357 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ (𝑋[,]𝑌)) | |
| 17 | 14, 15, 5, 16 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑋[,]𝑌)) |
| 18 | 11, 13, 17, 10 | fvmptd 6931 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) = 𝐿) |
| 19 | cncff 24806 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿)) → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) | |
| 20 | 6, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴):(𝑋[,]𝑌)⟶(𝐾[,]𝐿)) |
| 21 | 20, 17 | ffvelcdmd 7013 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)‘𝑌) ∈ (𝐾[,]𝐿)) |
| 22 | 18, 21 | eqeltrrd 2830 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝐾[,]𝐿)) |
| 23 | elicc2 13303 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿))) | |
| 24 | 9, 10, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐿 ∈ (𝐾[,]𝐿) ↔ (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿))) |
| 25 | 22, 24 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐿 ∈ ℝ ∧ 𝐾 ≤ 𝐿 ∧ 𝐿 ≤ 𝐿)) |
| 26 | 25 | simp2d 1143 | . 2 ⊢ (𝜑 → 𝐾 ≤ 𝐿) |
| 27 | itgsubsticc.7 | . 2 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) | |
| 28 | itgsubsticc.8 | . 2 ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) | |
| 29 | itgsubsticc.9 | . 2 ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) | |
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 26, 27, 28, 29, 12 | itgsubsticclem 45992 | 1 ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 ifcif 4473 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 ℝcr 10997 · cmul 11003 ℝ*cxr 11137 < clt 11138 ≤ cle 11139 (,)cioo 13237 [,]cicc 13240 –cn→ccncf 24789 𝐿1cibl 25538 ⨜cdit 25767 D cdv 25784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cc 10318 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-symdif 4201 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-cmp 23295 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-ovol 25385 df-vol 25386 df-mbf 25540 df-itg1 25541 df-itg2 25542 df-ibl 25543 df-itg 25544 df-0p 25591 df-ditg 25768 df-limc 25787 df-dv 25788 |
| This theorem is referenced by: itgiccshift 45997 itgperiod 45998 itgsbtaddcnst 45999 |
| Copyright terms: Public domain | W3C validator |