| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl2 | Structured version Visualization version GIF version | ||
| Description: 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5}. (Contributed by AV, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl2.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl2.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| usgrexmpl2.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| usgrexmpl2 | ⊢ 𝐺 ∈ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | . . 3 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl2.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 | |
| 3 | 1, 2 | usgrexmpl2lem 48007 | . 2 ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |
| 4 | usgrexmpl2.g | . . . 4 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 5 | 4 | eleq1i 2820 | . . 3 ⊢ (𝐺 ∈ USGraph ↔ 〈𝑉, 𝐸〉 ∈ USGraph) |
| 6 | 1 | ovexi 7423 | . . . 4 ⊢ 𝑉 ∈ V |
| 7 | s7cli 14857 | . . . . 5 ⊢ 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 ∈ Word V | |
| 8 | 2, 7 | eqeltri 2825 | . . . 4 ⊢ 𝐸 ∈ Word V |
| 9 | isusgrop 29095 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (〈𝑉, 𝐸〉 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})) | |
| 10 | 6, 8, 9 | mp2an 692 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 11 | 5, 10 | bitri 275 | . 2 ⊢ (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 12 | 3, 11 | mpbir 231 | 1 ⊢ 𝐺 ∈ USGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 𝒫 cpw 4565 {cpr 4593 〈cop 4597 dom cdm 5640 –1-1→wf1 6510 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 2c2 12242 3c3 12243 4c4 12244 5c5 12245 ...cfz 13474 ♯chash 14301 Word cword 14484 〈“cs7 14818 USGraphcusgr 29082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-hash 14302 df-word 14485 df-concat 14542 df-s1 14567 df-s2 14820 df-s3 14821 df-s4 14822 df-s5 14823 df-s6 14824 df-s7 14825 df-vtx 28931 df-iedg 28932 df-usgr 29084 |
| This theorem is referenced by: usgrexmpl2nblem 48011 usgrexmpl2trifr 48018 usgrexmpl12ngric 48019 usgrexmpl12ngrlic 48020 |
| Copyright terms: Public domain | W3C validator |