| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfliminf2 | Structured version Visualization version GIF version | ||
| Description: A sequence of extended reals converges to +∞ if and only if its superior limit is also +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| Ref | Expression |
|---|---|
| xlimpnfliminf2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimpnfliminf2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimpnfliminf2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| Ref | Expression |
|---|---|
| xlimpnfliminf2 | ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimpnfliminf2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | xlimpnfliminf2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | xlimpnfliminf2.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 4 | 1, 2, 3 | xlimpnfv 45941 | . 2 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
| 5 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑗𝐹 | |
| 6 | 5, 1, 2, 3 | liminfpnfuz 45919 | . 2 ⊢ (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
| 7 | 4, 6 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5093 ⟶wf 6483 ‘cfv 6487 ℝcr 11011 +∞cpnf 11149 ℝ*cxr 11151 ≤ cle 11153 ℤcz 12474 ℤ≥cuz 12738 lim infclsi 45854 ~~>*clsxlim 45921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-q 12853 df-xneg 13017 df-ioo 13255 df-ioc 13256 df-ico 13257 df-icc 13258 df-fl 13702 df-ceil 13703 df-limsup 15384 df-topgen 17353 df-ordt 17411 df-ps 18478 df-tsr 18479 df-top 22815 df-topon 22832 df-bases 22867 df-lm 23150 df-liminf 45855 df-xlim 45922 |
| This theorem is referenced by: xlimliminflimsup 45965 |
| Copyright terms: Public domain | W3C validator |