![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfliminf2 | Structured version Visualization version GIF version |
Description: A sequence of extended reals converges to +β if and only if its superior limit is also +β. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
xlimpnfliminf2.m | β’ (π β π β β€) |
xlimpnfliminf2.z | β’ π = (β€β₯βπ) |
xlimpnfliminf2.f | β’ (π β πΉ:πβΆβ*) |
Ref | Expression |
---|---|
xlimpnfliminf2 | β’ (π β (πΉ~~>*+β β (lim infβπΉ) = +β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimpnfliminf2.m | . . 3 β’ (π β π β β€) | |
2 | xlimpnfliminf2.z | . . 3 β’ π = (β€β₯βπ) | |
3 | xlimpnfliminf2.f | . . 3 β’ (π β πΉ:πβΆβ*) | |
4 | 1, 2, 3 | xlimpnfv 44554 | . 2 β’ (π β (πΉ~~>*+β β βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ))) |
5 | nfcv 2904 | . . 3 β’ β²ππΉ | |
6 | 5, 1, 2, 3 | liminfpnfuz 44532 | . 2 β’ (π β ((lim infβπΉ) = +β β βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ))) |
7 | 4, 6 | bitr4d 282 | 1 β’ (π β (πΉ~~>*+β β (lim infβπΉ) = +β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 βwral 3062 βwrex 3071 class class class wbr 5149 βΆwf 6540 βcfv 6544 βcr 11109 +βcpnf 11245 β*cxr 11247 β€ cle 11249 β€cz 12558 β€β₯cuz 12822 lim infclsi 44467 ~~>*clsxlim 44534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fi 9406 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-xneg 13092 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fl 13757 df-ceil 13758 df-limsup 15415 df-topgen 17389 df-ordt 17447 df-ps 18519 df-tsr 18520 df-top 22396 df-topon 22413 df-bases 22449 df-lm 22733 df-liminf 44468 df-xlim 44535 |
This theorem is referenced by: xlimliminflimsup 44578 |
Copyright terms: Public domain | W3C validator |