MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhcopsgnelbas Structured version   Visualization version   GIF version

Theorem zrhcopsgnelbas 21587
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
zrhpsgnelbas.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgnelbas.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnelbas.y 𝑌 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhcopsgnelbas ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) ∈ (Base‘𝑅))

Proof of Theorem zrhcopsgnelbas
StepHypRef Expression
1 zrhpsgnelbas.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 zrhpsgnelbas.s . . . 4 𝑆 = (pmSgn‘𝑁)
31, 2cofipsgn 21585 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
433adant1 1127 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
5 zrhpsgnelbas.y . . 3 𝑌 = (ℤRHom‘𝑅)
61, 2, 5zrhpsgnelbas 21586 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))
74, 6eqeltrd 2826 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  ccom 5678  cfv 6546  Fincfn 8966  Basecbs 17208  SymGrpcsymg 19360  pmSgncpsgn 19483  Ringcrg 20212  ℤRHomczrh 21485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-addf 11228  ax-mulf 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-xnn0 12591  df-z 12605  df-dec 12724  df-uz 12869  df-rp 13023  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-hash 14343  df-word 14518  df-lsw 14566  df-concat 14574  df-s1 14599  df-substr 14644  df-pfx 14674  df-splice 14753  df-reverse 14762  df-s2 14852  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-0g 17451  df-gsum 17452  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-efmnd 18854  df-grp 18926  df-minusg 18927  df-mulg 19058  df-subg 19113  df-ghm 19203  df-gim 19249  df-oppg 19336  df-symg 19361  df-pmtr 19436  df-psgn 19485  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-cring 20215  df-rhm 20450  df-subrng 20524  df-subrg 20549  df-cnfld 21340  df-zring 21433  df-zrh 21489
This theorem is referenced by:  madetsmelbas  22454  madetsmelbas2  22455  mdet0pr  22582  smadiadetlem1a  22653  mdetpmtr12  33653
  Copyright terms: Public domain W3C validator