Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > copsgndif | Structured version Visualization version GIF version |
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
Ref | Expression |
---|---|
copsgndif.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
copsgndif.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
copsgndif.z | ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) |
Ref | Expression |
---|---|
copsgndif | ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copsgndif.p | . . . . . 6 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
2 | copsgndif.s | . . . . . 6 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | copsgndif.z | . . . . . 6 ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) | |
4 | 1, 2, 3 | psgndif 20852 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) |
5 | 4 | imp 408 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄)) |
6 | 5 | fveq2d 6808 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))) = (𝑌‘(𝑆‘𝑄))) |
7 | diffi 9000 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) | |
8 | 7 | ad2antrr 724 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin) |
9 | eqid 2736 | . . . . . 6 ⊢ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} | |
10 | eqid 2736 | . . . . . 6 ⊢ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
11 | eqid 2736 | . . . . . 6 ⊢ (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾}) | |
12 | 1, 9, 10, 11 | symgfixelsi 19088 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
13 | 12 | adantll 712 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
14 | 10, 3 | cofipsgn 20843 | . . . 4 ⊢ (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))))) |
15 | 8, 13, 14 | syl2anc 585 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))))) |
16 | elrabi 3623 | . . . . 5 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 ∈ 𝑃) | |
17 | 1, 2 | cofipsgn 20843 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
18 | 16, 17 | sylan2 594 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
19 | 18 | adantlr 713 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
20 | 6, 15, 19 | 3eqtr4d 2786 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄)) |
21 | 20 | ex 414 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {crab 3284 ∖ cdif 3889 {csn 4565 ↾ cres 5602 ∘ ccom 5604 ‘cfv 6458 Fincfn 8764 Basecbs 16957 SymGrpcsymg 19019 pmSgncpsgn 19142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-xor 1508 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-word 14263 df-lsw 14311 df-concat 14319 df-s1 14346 df-substr 14399 df-pfx 14429 df-splice 14508 df-reverse 14517 df-s2 14606 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-tset 17026 df-0g 17197 df-gsum 17198 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-efmnd 18553 df-grp 18625 df-minusg 18626 df-subg 18797 df-ghm 18877 df-gim 18920 df-oppg 18995 df-symg 19020 df-pmtr 19095 df-psgn 19144 |
This theorem is referenced by: smadiadetlem3 21862 |
Copyright terms: Public domain | W3C validator |