MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsgndif Structured version   Visualization version   GIF version

Theorem copsgndif 20853
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.)
Hypotheses
Ref Expression
copsgndif.p 𝑃 = (Base‘(SymGrp‘𝑁))
copsgndif.s 𝑆 = (pmSgn‘𝑁)
copsgndif.z 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
Assertion
Ref Expression
copsgndif ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑄)))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑆(𝑞)   𝑁(𝑞)   𝑌(𝑞)   𝑍(𝑞)

Proof of Theorem copsgndif
StepHypRef Expression
1 copsgndif.p . . . . . 6 𝑃 = (Base‘(SymGrp‘𝑁))
2 copsgndif.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
3 copsgndif.z . . . . . 6 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
41, 2, 3psgndif 20852 . . . . 5 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
54imp 408 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄))
65fveq2d 6808 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))) = (𝑌‘(𝑆𝑄)))
7 diffi 9000 . . . . 5 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
87ad2antrr 724 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin)
9 eqid 2736 . . . . . 6 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
10 eqid 2736 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
11 eqid 2736 . . . . . 6 (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾})
121, 9, 10, 11symgfixelsi 19088 . . . . 5 ((𝐾𝑁𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
1312adantll 712 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
1410, 3cofipsgn 20843 . . . 4 (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))))
158, 13, 14syl2anc 585 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))))
16 elrabi 3623 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
171, 2cofipsgn 20843 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
1816, 17sylan2 594 . . . 4 ((𝑁 ∈ Fin ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
1918adantlr 713 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
206, 15, 193eqtr4d 2786 . 2 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑄))
2120ex 414 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  {crab 3284  cdif 3889  {csn 4565  cres 5602  ccom 5604  cfv 6458  Fincfn 8764  Basecbs 16957  SymGrpcsymg 19019  pmSgncpsgn 19142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-xor 1508  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-ot 4574  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-tpos 8073  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-xnn0 12352  df-z 12366  df-uz 12629  df-rp 12777  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-word 14263  df-lsw 14311  df-concat 14319  df-s1 14346  df-substr 14399  df-pfx 14429  df-splice 14508  df-reverse 14517  df-s2 14606  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-tset 17026  df-0g 17197  df-gsum 17198  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mhm 18475  df-submnd 18476  df-efmnd 18553  df-grp 18625  df-minusg 18626  df-subg 18797  df-ghm 18877  df-gim 18920  df-oppg 18995  df-symg 19020  df-pmtr 19095  df-psgn 19144
This theorem is referenced by:  smadiadetlem3  21862
  Copyright terms: Public domain W3C validator