Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > copsgndif | Structured version Visualization version GIF version |
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
Ref | Expression |
---|---|
copsgndif.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
copsgndif.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
copsgndif.z | ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) |
Ref | Expression |
---|---|
copsgndif | ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copsgndif.p | . . . . . 6 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
2 | copsgndif.s | . . . . . 6 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | copsgndif.z | . . . . . 6 ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) | |
4 | 1, 2, 3 | psgndif 20905 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) |
5 | 4 | imp 407 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄)) |
6 | 5 | fveq2d 6823 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))) = (𝑌‘(𝑆‘𝑄))) |
7 | diffi 9036 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) | |
8 | 7 | ad2antrr 723 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin) |
9 | eqid 2736 | . . . . . 6 ⊢ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} | |
10 | eqid 2736 | . . . . . 6 ⊢ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
11 | eqid 2736 | . . . . . 6 ⊢ (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾}) | |
12 | 1, 9, 10, 11 | symgfixelsi 19131 | . . . . 5 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
13 | 12 | adantll 711 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
14 | 10, 3 | cofipsgn 20896 | . . . 4 ⊢ (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))))) |
15 | 8, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))))) |
16 | elrabi 3628 | . . . . 5 ⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 ∈ 𝑃) | |
17 | 1, 2 | cofipsgn 20896 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
18 | 16, 17 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
19 | 18 | adantlr 712 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
20 | 6, 15, 19 | 3eqtr4d 2786 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄)) |
21 | 20 | ex 413 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3403 ∖ cdif 3894 {csn 4572 ↾ cres 5616 ∘ ccom 5618 ‘cfv 6473 Fincfn 8796 Basecbs 17001 SymGrpcsymg 19062 pmSgncpsgn 19185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-ot 4581 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-tpos 8104 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-word 14310 df-lsw 14358 df-concat 14366 df-s1 14392 df-substr 14444 df-pfx 14474 df-splice 14553 df-reverse 14562 df-s2 14652 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-tset 17070 df-0g 17241 df-gsum 17242 df-mre 17384 df-mrc 17385 df-acs 17387 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-mhm 18519 df-submnd 18520 df-efmnd 18596 df-grp 18668 df-minusg 18669 df-subg 18840 df-ghm 18920 df-gim 18963 df-oppg 19038 df-symg 19063 df-pmtr 19138 df-psgn 19187 |
This theorem is referenced by: smadiadetlem3 21915 |
Copyright terms: Public domain | W3C validator |