Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvfsumrlimf | Structured version Visualization version GIF version |
Description: Lemma for dvfsumrlim 25301. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvfsum.s | β’ π = (π(,)+β) |
dvfsum.z | β’ π = (β€β₯βπ) |
dvfsum.m | β’ (π β π β β€) |
dvfsum.d | β’ (π β π· β β) |
dvfsum.md | β’ (π β π β€ (π· + 1)) |
dvfsum.t | β’ (π β π β β) |
dvfsum.a | β’ ((π β§ π₯ β π) β π΄ β β) |
dvfsum.b1 | β’ ((π β§ π₯ β π) β π΅ β π) |
dvfsum.b2 | β’ ((π β§ π₯ β π) β π΅ β β) |
dvfsum.b3 | β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) |
dvfsum.c | β’ (π₯ = π β π΅ = πΆ) |
dvfsumrlimf.g | β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) |
Ref | Expression |
---|---|
dvfsumrlimf | β’ (π β πΊ:πβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13794 | . . . 4 β’ ((π β§ π₯ β π) β (π...(ββπ₯)) β Fin) | |
2 | dvfsum.b2 | . . . . . . 7 β’ ((π β§ π₯ β π) β π΅ β β) | |
3 | 2 | ralrimiva 3139 | . . . . . 6 β’ (π β βπ₯ β π π΅ β β) |
4 | 3 | adantr 481 | . . . . 5 β’ ((π β§ π₯ β π) β βπ₯ β π π΅ β β) |
5 | elfzuz 13353 | . . . . . 6 β’ (π β (π...(ββπ₯)) β π β (β€β₯βπ)) | |
6 | dvfsum.z | . . . . . 6 β’ π = (β€β₯βπ) | |
7 | 5, 6 | eleqtrrdi 2848 | . . . . 5 β’ (π β (π...(ββπ₯)) β π β π) |
8 | dvfsum.c | . . . . . . 7 β’ (π₯ = π β π΅ = πΆ) | |
9 | 8 | eleq1d 2821 | . . . . . 6 β’ (π₯ = π β (π΅ β β β πΆ β β)) |
10 | 9 | rspccva 3569 | . . . . 5 β’ ((βπ₯ β π π΅ β β β§ π β π) β πΆ β β) |
11 | 4, 7, 10 | syl2an 596 | . . . 4 β’ (((π β§ π₯ β π) β§ π β (π...(ββπ₯))) β πΆ β β) |
12 | 1, 11 | fsumrecl 15545 | . . 3 β’ ((π β§ π₯ β π) β Ξ£π β (π...(ββπ₯))πΆ β β) |
13 | dvfsum.a | . . 3 β’ ((π β§ π₯ β π) β π΄ β β) | |
14 | 12, 13 | resubcld 11504 | . 2 β’ ((π β§ π₯ β π) β (Ξ£π β (π...(ββπ₯))πΆ β π΄) β β) |
15 | dvfsumrlimf.g | . 2 β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) | |
16 | 14, 15 | fmptd 7044 | 1 β’ (π β πΊ:πβΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1540 β wcel 2105 βwral 3061 class class class wbr 5092 β¦ cmpt 5175 βΆwf 6475 βcfv 6479 (class class class)co 7337 βcr 10971 1c1 10973 + caddc 10975 +βcpnf 11107 β€ cle 11111 β cmin 11306 β€cz 12420 β€β₯cuz 12683 (,)cioo 13180 ...cfz 13340 βcfl 13611 Ξ£csu 15496 D cdv 25133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 |
This theorem is referenced by: dvfsumrlim 25301 dvfsumrlim2 25302 dvfsumrlim3 25303 |
Copyright terms: Public domain | W3C validator |