| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvfsumrlimf | Structured version Visualization version GIF version | ||
| Description: Lemma for dvfsumrlim 25968. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
| dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
| dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
| dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
| dvfsumrlimf.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
| Ref | Expression |
|---|---|
| dvfsumrlimf | ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid 13884 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin) | |
| 2 | dvfsum.b2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 3 | 2 | ralrimiva 3125 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ) |
| 5 | elfzuz 13424 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 6 | dvfsum.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 5, 6 | eleqtrrdi 2844 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ 𝑍) |
| 8 | dvfsum.c | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
| 9 | 8 | eleq1d 2818 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
| 10 | 9 | rspccva 3572 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℝ) |
| 11 | 4, 7, 10 | syl2an 596 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ) |
| 12 | 1, 11 | fsumrecl 15645 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ) |
| 13 | dvfsum.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
| 14 | 12, 13 | resubcld 11554 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴) ∈ ℝ) |
| 15 | dvfsumrlimf.g | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | |
| 16 | 14, 15 | fmptd 7055 | 1 ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 ↦ cmpt 5176 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 1c1 11016 + caddc 11018 +∞cpnf 11152 ≤ cle 11156 − cmin 11353 ℤcz 12477 ℤ≥cuz 12740 (,)cioo 13249 ...cfz 13411 ⌊cfl 13698 Σcsu 15597 D cdv 25794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 |
| This theorem is referenced by: dvfsumrlim 25968 dvfsumrlim2 25969 dvfsumrlim3 25970 |
| Copyright terms: Public domain | W3C validator |