MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlimf Structured version   Visualization version   GIF version

Theorem dvfsumrlimf 25778
Description: Lemma for dvfsumrlim 25784. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (β„€β‰₯β€˜π‘€)
dvfsum.m (πœ‘ β†’ 𝑀 ∈ β„€)
dvfsum.d (πœ‘ β†’ 𝐷 ∈ ℝ)
dvfsum.md (πœ‘ β†’ 𝑀 ≀ (𝐷 + 1))
dvfsum.t (πœ‘ β†’ 𝑇 ∈ ℝ)
dvfsum.a ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝐴 ∈ ℝ)
dvfsum.b1 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝐡 ∈ 𝑉)
dvfsum.b2 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ 𝐡 ∈ ℝ)
dvfsum.b3 (πœ‘ β†’ (ℝ D (π‘₯ ∈ 𝑆 ↦ 𝐴)) = (π‘₯ ∈ 𝑆 ↦ 𝐡))
dvfsum.c (π‘₯ = π‘˜ β†’ 𝐡 = 𝐢)
dvfsumrlimf.g 𝐺 = (π‘₯ ∈ 𝑆 ↦ (Ξ£π‘˜ ∈ (𝑀...(βŒŠβ€˜π‘₯))𝐢 βˆ’ 𝐴))
Assertion
Ref Expression
dvfsumrlimf (πœ‘ β†’ 𝐺:π‘†βŸΆβ„)
Distinct variable groups:   𝐡,π‘˜   π‘₯,𝐢   π‘₯,π‘˜,𝐷   πœ‘,π‘˜,π‘₯   𝑆,π‘˜,π‘₯   π‘˜,𝑀,π‘₯   π‘₯,𝑇   π‘₯,𝑍
Allowed substitution hints:   𝐴(π‘₯,π‘˜)   𝐡(π‘₯)   𝐢(π‘˜)   𝑇(π‘˜)   𝐺(π‘₯,π‘˜)   𝑉(π‘₯,π‘˜)   𝑍(π‘˜)

Proof of Theorem dvfsumrlimf
StepHypRef Expression
1 fzfid 13943 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (𝑀...(βŒŠβ€˜π‘₯)) ∈ Fin)
2 dvfsum.b2 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ 𝐡 ∈ ℝ)
32ralrimiva 3145 . . . . . 6 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑍 𝐡 ∈ ℝ)
43adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ βˆ€π‘₯ ∈ 𝑍 𝐡 ∈ ℝ)
5 elfzuz 13502 . . . . . 6 (π‘˜ ∈ (𝑀...(βŒŠβ€˜π‘₯)) β†’ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
6 dvfsum.z . . . . . 6 𝑍 = (β„€β‰₯β€˜π‘€)
75, 6eleqtrrdi 2843 . . . . 5 (π‘˜ ∈ (𝑀...(βŒŠβ€˜π‘₯)) β†’ π‘˜ ∈ 𝑍)
8 dvfsum.c . . . . . . 7 (π‘₯ = π‘˜ β†’ 𝐡 = 𝐢)
98eleq1d 2817 . . . . . 6 (π‘₯ = π‘˜ β†’ (𝐡 ∈ ℝ ↔ 𝐢 ∈ ℝ))
109rspccva 3611 . . . . 5 ((βˆ€π‘₯ ∈ 𝑍 𝐡 ∈ ℝ ∧ π‘˜ ∈ 𝑍) β†’ 𝐢 ∈ ℝ)
114, 7, 10syl2an 595 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑆) ∧ π‘˜ ∈ (𝑀...(βŒŠβ€˜π‘₯))) β†’ 𝐢 ∈ ℝ)
121, 11fsumrecl 15685 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ Ξ£π‘˜ ∈ (𝑀...(βŒŠβ€˜π‘₯))𝐢 ∈ ℝ)
13 dvfsum.a . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ 𝐴 ∈ ℝ)
1412, 13resubcld 11647 . 2 ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ (Ξ£π‘˜ ∈ (𝑀...(βŒŠβ€˜π‘₯))𝐢 βˆ’ 𝐴) ∈ ℝ)
15 dvfsumrlimf.g . 2 𝐺 = (π‘₯ ∈ 𝑆 ↦ (Ξ£π‘˜ ∈ (𝑀...(βŒŠβ€˜π‘₯))𝐢 βˆ’ 𝐴))
1614, 15fmptd 7115 1 (πœ‘ β†’ 𝐺:π‘†βŸΆβ„)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   class class class wbr 5148   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  β„cr 11113  1c1 11115   + caddc 11117  +∞cpnf 11250   ≀ cle 11254   βˆ’ cmin 11449  β„€cz 12563  β„€β‰₯cuz 12827  (,)cioo 13329  ...cfz 13489  βŒŠcfl 13760  Ξ£csu 15637   D cdv 25613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-oi 9509  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638
This theorem is referenced by:  dvfsumrlim  25784  dvfsumrlim2  25785  dvfsumrlim3  25786
  Copyright terms: Public domain W3C validator