![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvfsumrlimf | Structured version Visualization version GIF version |
Description: Lemma for dvfsumrlim 25529. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
dvfsumrlimf.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
Ref | Expression |
---|---|
dvfsumrlimf | ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13933 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin) | |
2 | dvfsum.b2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
3 | 2 | ralrimiva 3147 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ) |
4 | 3 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ) |
5 | elfzuz 13492 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
6 | dvfsum.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | 5, 6 | eleqtrrdi 2845 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ 𝑍) |
8 | dvfsum.c | . . . . . . 7 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
9 | 8 | eleq1d 2819 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
10 | 9 | rspccva 3610 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℝ) |
11 | 4, 7, 10 | syl2an 597 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ) |
12 | 1, 11 | fsumrecl 15675 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ) |
13 | dvfsum.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
14 | 12, 13 | resubcld 11637 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴) ∈ ℝ) |
15 | dvfsumrlimf.g | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | |
16 | 14, 15 | fmptd 7108 | 1 ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 class class class wbr 5146 ↦ cmpt 5229 ⟶wf 6535 ‘cfv 6539 (class class class)co 7403 ℝcr 11104 1c1 11106 + caddc 11108 +∞cpnf 11240 ≤ cle 11244 − cmin 11439 ℤcz 12553 ℤ≥cuz 12817 (,)cioo 13319 ...cfz 13479 ⌊cfl 13750 Σcsu 15627 D cdv 25361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-isom 6548 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-2 12270 df-3 12271 df-n0 12468 df-z 12554 df-uz 12818 df-rp 12970 df-fz 13480 df-fzo 13623 df-seq 13962 df-exp 14023 df-hash 14286 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15427 df-sum 15628 |
This theorem is referenced by: dvfsumrlim 25529 dvfsumrlim2 25530 dvfsumrlim3 25531 |
Copyright terms: Public domain | W3C validator |