Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumrecl | Structured version Visualization version GIF version |
Description: Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.) |
Ref | Expression |
---|---|
fsumcl.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumrecl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
fsumrecl | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 10937 | . . 3 ⊢ ℝ ⊆ ℂ | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ⊆ ℂ) |
3 | readdcl 10963 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
4 | 3 | adantl 482 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
5 | fsumcl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | fsumrecl.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
7 | 0red 10987 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 2, 4, 5, 6, 7 | fsumcllem 15453 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
Copyright terms: Public domain | W3C validator |