Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval2nd | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) |
Ref | Expression |
---|---|
dicelval2nd.l | ⊢ ≤ = (le‘𝐾) |
dicelval2nd.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicelval2nd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicelval2nd.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dicelval2nd.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dicelval2nd | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (2nd ‘𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicelval2nd.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
2 | dicelval2nd.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicelval2nd.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicelval2nd.i | . . . . . 6 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
5 | eqid 2759 | . . . . . 6 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2759 | . . . . . 6 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
7 | 1, 2, 3, 4, 5, 6 | dicssdvh 38798 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
8 | eqid 2759 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
9 | dicelval2nd.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
10 | 3, 8, 9, 5, 6 | dvhvbase 38699 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
11 | 10 | adantr 484 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Base‘((DVecH‘𝐾)‘𝑊)) = (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
12 | 7, 11 | sseqtrd 3935 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
13 | 12 | sseld 3894 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) |
14 | 13 | 3impia 1115 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
15 | xp2nd 7733 | . 2 ⊢ (𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸) → (2nd ‘𝑌) ∈ 𝐸) | |
16 | 14, 15 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (2nd ‘𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 class class class wbr 5037 × cxp 5527 ‘cfv 6341 2nd c2nd 7699 Basecbs 16556 lecple 16645 Atomscatm 36875 HLchlt 36962 LHypclh 37596 LTrncltrn 37713 TEndoctendo 38364 DVecHcdvh 38690 DIsoCcdic 38784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-riotaBAD 36565 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-undef 7956 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-n0 11949 df-z 12035 df-uz 12297 df-fz 12954 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-plusg 16651 df-sca 16654 df-vsca 16655 df-proset 17619 df-poset 17637 df-plt 17649 df-lub 17665 df-glb 17666 df-join 17667 df-meet 17668 df-p0 17730 df-p1 17731 df-lat 17737 df-clat 17799 df-oposet 36788 df-ol 36790 df-oml 36791 df-covers 36878 df-ats 36879 df-atl 36910 df-cvlat 36934 df-hlat 36963 df-llines 37110 df-lplanes 37111 df-lvols 37112 df-lines 37113 df-psubsp 37115 df-pmap 37116 df-padd 37408 df-lhyp 37600 df-laut 37601 df-ldil 37716 df-ltrn 37717 df-trl 37771 df-tendo 38367 df-dvech 38691 df-dic 38785 |
This theorem is referenced by: dicvaddcl 38802 dicvscacl 38803 |
Copyright terms: Public domain | W3C validator |