MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoser Structured version   Visualization version   GIF version

Theorem geoser 15853
Description: The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.)
Hypotheses
Ref Expression
geoser.1 (𝜑𝐴 ∈ ℂ)
geoser.2 (𝜑𝐴 ≠ 1)
geoser.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
geoser (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem geoser
StepHypRef Expression
1 geoser.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 geoser.2 . . 3 (𝜑𝐴 ≠ 1)
3 0nn0 12525 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
5 geoser.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
6 nn0uz 12902 . . . 4 0 = (ℤ‘0)
75, 6eleqtrdi 2839 . . 3 (𝜑𝑁 ∈ (ℤ‘0))
81, 2, 4, 7geoserg 15852 . 2 (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴𝑘) = (((𝐴↑0) − (𝐴𝑁)) / (1 − 𝐴)))
95nn0zd 12622 . . . 4 (𝜑𝑁 ∈ ℤ)
10 fzoval 13673 . . . 4 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
119, 10syl 17 . . 3 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
1211sumeq1d 15687 . 2 (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
131exp0d 14144 . . . 4 (𝜑 → (𝐴↑0) = 1)
1413oveq1d 7441 . . 3 (𝜑 → ((𝐴↑0) − (𝐴𝑁)) = (1 − (𝐴𝑁)))
1514oveq1d 7441 . 2 (𝜑 → (((𝐴↑0) − (𝐴𝑁)) / (1 − 𝐴)) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
168, 12, 153eqtr3d 2776 1 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2937  cfv 6553  (class class class)co 7426  cc 11144  0cc0 11146  1c1 11147  cmin 11482   / cdiv 11909  0cn0 12510  cz 12596  cuz 12860  ...cfz 13524  ..^cfzo 13667  cexp 14066  Σcsu 15672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-sum 15673
This theorem is referenced by:  geolim  15856  geolim2  15857  geo2sum  15859  geo2sum2  15860  3dvds  16315  1sgm2ppw  27153  mersenne  27180  knoppndvlem14  36033
  Copyright terms: Public domain W3C validator