![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > geoser | Structured version Visualization version GIF version |
Description: The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
geoser.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
geoser.2 | ⊢ (𝜑 → 𝐴 ≠ 1) |
geoser.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
geoser | ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | geoser.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | geoser.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 1) | |
3 | 0nn0 11722 | . . . 4 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
5 | geoser.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
6 | nn0uz 12092 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | 5, 6 | syl6eleq 2869 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
8 | 1, 2, 4, 7 | geoserg 15079 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴↑𝑘) = (((𝐴↑0) − (𝐴↑𝑁)) / (1 − 𝐴))) |
9 | 5 | nn0zd 11896 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | fzoval 12853 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (0..^𝑁) = (0...(𝑁 − 1))) |
12 | 11 | sumeq1d 14916 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) |
13 | 1 | exp0d 13317 | . . . 4 ⊢ (𝜑 → (𝐴↑0) = 1) |
14 | 13 | oveq1d 6989 | . . 3 ⊢ (𝜑 → ((𝐴↑0) − (𝐴↑𝑁)) = (1 − (𝐴↑𝑁))) |
15 | 14 | oveq1d 6989 | . 2 ⊢ (𝜑 → (((𝐴↑0) − (𝐴↑𝑁)) / (1 − 𝐴)) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
16 | 8, 12, 15 | 3eqtr3d 2815 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 ‘cfv 6185 (class class class)co 6974 ℂcc 10331 0cc0 10333 1c1 10334 − cmin 10668 / cdiv 11096 ℕ0cn0 11705 ℤcz 11791 ℤ≥cuz 12056 ...cfz 12706 ..^cfzo 12847 ↑cexp 13242 Σcsu 14901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-sup 8699 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-fz 12707 df-fzo 12848 df-seq 13183 df-exp 13243 df-hash 13504 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-clim 14704 df-sum 14902 |
This theorem is referenced by: pwm1geoserOLD 15083 geolim 15084 geolim2 15085 geo2sum 15087 geo2sum2 15088 3dvds 15538 1sgm2ppw 25493 mersenne 25520 knoppndvlem14 33421 |
Copyright terms: Public domain | W3C validator |