MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoser Structured version   Visualization version   GIF version

Theorem geoser 14805
Description: The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.)
Hypotheses
Ref Expression
geoser.1 (𝜑𝐴 ∈ ℂ)
geoser.2 (𝜑𝐴 ≠ 1)
geoser.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
geoser (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem geoser
StepHypRef Expression
1 geoser.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 geoser.2 . . 3 (𝜑𝐴 ≠ 1)
3 0nn0 11513 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
5 geoser.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
6 nn0uz 11928 . . . 4 0 = (ℤ‘0)
75, 6syl6eleq 2860 . . 3 (𝜑𝑁 ∈ (ℤ‘0))
81, 2, 4, 7geoserg 14804 . 2 (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴𝑘) = (((𝐴↑0) − (𝐴𝑁)) / (1 − 𝐴)))
95nn0zd 11686 . . . 4 (𝜑𝑁 ∈ ℤ)
10 fzoval 12678 . . . 4 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
119, 10syl 17 . . 3 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
1211sumeq1d 14638 . 2 (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
131exp0d 13208 . . . 4 (𝜑 → (𝐴↑0) = 1)
1413oveq1d 6810 . . 3 (𝜑 → ((𝐴↑0) − (𝐴𝑁)) = (1 − (𝐴𝑁)))
1514oveq1d 6810 . 2 (𝜑 → (((𝐴↑0) − (𝐴𝑁)) / (1 − 𝐴)) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
168, 12, 153eqtr3d 2813 1 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wne 2943  cfv 6030  (class class class)co 6795  cc 10139  0cc0 10141  1c1 10142  cmin 10471   / cdiv 10889  0cn0 11498  cz 11583  cuz 11892  ...cfz 12532  ..^cfzo 12672  cexp 13066  Σcsu 14623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-oi 8574  df-card 8968  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624
This theorem is referenced by:  pwm1geoser  14806  geolim  14807  geolim2  14808  geo2sum  14810  geo2sum2  14811  3dvds  15260  3dvdsOLD  15261  1sgm2ppw  25145  mersenne  25172  knoppndvlem14  32852
  Copyright terms: Public domain W3C validator