Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwm1geoser | Structured version Visualization version GIF version |
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.) |
Ref | Expression |
---|---|
pwm1geoser.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pwm1geoser.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
pwm1geoser | ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwm1geoser.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1 | nn0zd 12424 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
3 | 1exp 13812 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
5 | 4 | eqcomd 2744 | . . 3 ⊢ (𝜑 → 1 = (1↑𝑁)) |
6 | 5 | oveq2d 7291 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴↑𝑁) − (1↑𝑁))) |
7 | pwm1geoser.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 1cnd 10970 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
9 | pwdif 15580 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) | |
10 | 1, 7, 8, 9 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) |
11 | fzoval 13388 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝑁) = (0...(𝑁 − 1))) |
13 | 2 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
14 | elfzoelz 13387 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ) | |
15 | 14 | adantl 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ) |
16 | 13, 15 | zsubcld 12431 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
17 | peano2zm 12363 | . . . . . . 7 ⊢ ((𝑁 − 𝑘) ∈ ℤ → ((𝑁 − 𝑘) − 1) ∈ ℤ) | |
18 | 1exp 13812 | . . . . . . 7 ⊢ (((𝑁 − 𝑘) − 1) ∈ ℤ → (1↑((𝑁 − 𝑘) − 1)) = 1) | |
19 | 16, 17, 18 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (1↑((𝑁 − 𝑘) − 1)) = 1) |
20 | 19 | oveq2d 7291 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = ((𝐴↑𝑘) · 1)) |
21 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ) |
22 | elfzonn0 13432 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0) | |
23 | 22 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) |
24 | 21, 23 | expcld 13864 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
25 | 24 | mulid1d 10992 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
26 | 20, 25 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = (𝐴↑𝑘)) |
27 | 12, 26 | sumeq12dv 15418 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) |
28 | 27 | oveq2d 7291 | . 2 ⊢ (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
29 | 6, 10, 28 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 − cmin 11205 ℕ0cn0 12233 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 ↑cexp 13782 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 |
This theorem is referenced by: lighneallem3 45059 |
Copyright terms: Public domain | W3C validator |