MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwm1geoser Structured version   Visualization version   GIF version

Theorem pwm1geoser 15811
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.)
Hypotheses
Ref Expression
pwm1geoser.a (𝜑𝐴 ∈ ℂ)
pwm1geoser.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
pwm1geoser (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwm1geoser
StepHypRef Expression
1 pwm1geoser.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0zd 12580 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 1exp 14053 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
42, 3syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
54eqcomd 2739 . . 3 (𝜑 → 1 = (1↑𝑁))
65oveq2d 7420 . 2 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴𝑁) − (1↑𝑁)))
7 pwm1geoser.a . . 3 (𝜑𝐴 ∈ ℂ)
8 1cnd 11205 . . 3 (𝜑 → 1 ∈ ℂ)
9 pwdif 15810 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
101, 7, 8, 9syl3anc 1372 . 2 (𝜑 → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
11 fzoval 13629 . . . . 5 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
122, 11syl 17 . . . 4 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
132adantr 482 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
14 elfzoelz 13628 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
1514adantl 483 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1613, 15zsubcld 12667 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑁𝑘) ∈ ℤ)
17 peano2zm 12601 . . . . . . 7 ((𝑁𝑘) ∈ ℤ → ((𝑁𝑘) − 1) ∈ ℤ)
18 1exp 14053 . . . . . . 7 (((𝑁𝑘) − 1) ∈ ℤ → (1↑((𝑁𝑘) − 1)) = 1)
1916, 17, 183syl 18 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (1↑((𝑁𝑘) − 1)) = 1)
2019oveq2d 7420 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = ((𝐴𝑘) · 1))
217adantr 482 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ)
22 elfzonn0 13673 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0)
2322adantl 483 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
2421, 23expcld 14107 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴𝑘) ∈ ℂ)
2524mulridd 11227 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2620, 25eqtrd 2773 . . . 4 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = (𝐴𝑘))
2712, 26sumeq12dv 15648 . . 3 (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
2827oveq2d 7420 . 2 (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
296, 10, 283eqtrd 2777 1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  (class class class)co 7404  cc 11104  0cc0 11106  1c1 11107   · cmul 11111  cmin 11440  0cn0 12468  cz 12554  ...cfz 13480  ..^cfzo 13623  cexp 14023  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  lighneallem3  46210
  Copyright terms: Public domain W3C validator