MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwm1geoser Structured version   Visualization version   GIF version

Theorem pwm1geoser 15581
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.)
Hypotheses
Ref Expression
pwm1geoser.a (𝜑𝐴 ∈ ℂ)
pwm1geoser.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
pwm1geoser (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwm1geoser
StepHypRef Expression
1 pwm1geoser.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0zd 12424 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 1exp 13812 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
42, 3syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
54eqcomd 2744 . . 3 (𝜑 → 1 = (1↑𝑁))
65oveq2d 7291 . 2 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴𝑁) − (1↑𝑁)))
7 pwm1geoser.a . . 3 (𝜑𝐴 ∈ ℂ)
8 1cnd 10970 . . 3 (𝜑 → 1 ∈ ℂ)
9 pwdif 15580 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
101, 7, 8, 9syl3anc 1370 . 2 (𝜑 → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
11 fzoval 13388 . . . . 5 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
122, 11syl 17 . . . 4 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
132adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
14 elfzoelz 13387 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
1514adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1613, 15zsubcld 12431 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑁𝑘) ∈ ℤ)
17 peano2zm 12363 . . . . . . 7 ((𝑁𝑘) ∈ ℤ → ((𝑁𝑘) − 1) ∈ ℤ)
18 1exp 13812 . . . . . . 7 (((𝑁𝑘) − 1) ∈ ℤ → (1↑((𝑁𝑘) − 1)) = 1)
1916, 17, 183syl 18 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (1↑((𝑁𝑘) − 1)) = 1)
2019oveq2d 7291 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = ((𝐴𝑘) · 1))
217adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ)
22 elfzonn0 13432 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0)
2322adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
2421, 23expcld 13864 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴𝑘) ∈ ℂ)
2524mulid1d 10992 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2620, 25eqtrd 2778 . . . 4 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = (𝐴𝑘))
2712, 26sumeq12dv 15418 . . 3 (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
2827oveq2d 7291 . 2 (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
296, 10, 283eqtrd 2782 1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   · cmul 10876  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382  cexp 13782  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  lighneallem3  45059
  Copyright terms: Public domain W3C validator