![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwm1geoser | Structured version Visualization version GIF version |
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.) |
Ref | Expression |
---|---|
pwm1geoser.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pwm1geoser.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
pwm1geoser | ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwm1geoser.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1 | nn0zd 12580 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
3 | 1exp 14053 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
5 | 4 | eqcomd 2739 | . . 3 ⊢ (𝜑 → 1 = (1↑𝑁)) |
6 | 5 | oveq2d 7420 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴↑𝑁) − (1↑𝑁))) |
7 | pwm1geoser.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 1cnd 11205 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
9 | pwdif 15810 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) | |
10 | 1, 7, 8, 9 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) |
11 | fzoval 13629 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝑁) = (0...(𝑁 − 1))) |
13 | 2 | adantr 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
14 | elfzoelz 13628 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ) | |
15 | 14 | adantl 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ) |
16 | 13, 15 | zsubcld 12667 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
17 | peano2zm 12601 | . . . . . . 7 ⊢ ((𝑁 − 𝑘) ∈ ℤ → ((𝑁 − 𝑘) − 1) ∈ ℤ) | |
18 | 1exp 14053 | . . . . . . 7 ⊢ (((𝑁 − 𝑘) − 1) ∈ ℤ → (1↑((𝑁 − 𝑘) − 1)) = 1) | |
19 | 16, 17, 18 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (1↑((𝑁 − 𝑘) − 1)) = 1) |
20 | 19 | oveq2d 7420 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = ((𝐴↑𝑘) · 1)) |
21 | 7 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ) |
22 | elfzonn0 13673 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0) | |
23 | 22 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) |
24 | 21, 23 | expcld 14107 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
25 | 24 | mulridd 11227 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
26 | 20, 25 | eqtrd 2773 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = (𝐴↑𝑘)) |
27 | 12, 26 | sumeq12dv 15648 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) |
28 | 27 | oveq2d 7420 | . 2 ⊢ (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
29 | 6, 10, 28 | 3eqtrd 2777 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7404 ℂcc 11104 0cc0 11106 1c1 11107 · cmul 11111 − cmin 11440 ℕ0cn0 12468 ℤcz 12554 ...cfz 13480 ..^cfzo 13623 ↑cexp 14023 Σcsu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 |
This theorem is referenced by: lighneallem3 46210 |
Copyright terms: Public domain | W3C validator |