![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwm1geoser | Structured version Visualization version GIF version |
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.) |
Ref | Expression |
---|---|
pwm1geoser.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pwm1geoser.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
pwm1geoser | ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwm1geoser.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1 | nn0zd 12665 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
3 | 1exp 14142 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (1↑𝑁) = 1) |
5 | 4 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 1 = (1↑𝑁)) |
6 | 5 | oveq2d 7464 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴↑𝑁) − (1↑𝑁))) |
7 | pwm1geoser.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 1cnd 11285 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
9 | pwdif 15916 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) | |
10 | 1, 7, 8, 9 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))))) |
11 | fzoval 13717 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (0..^𝑁) = (0...(𝑁 − 1))) |
13 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
14 | elfzoelz 13716 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ) | |
15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ) |
16 | 13, 15 | zsubcld 12752 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
17 | peano2zm 12686 | . . . . . . 7 ⊢ ((𝑁 − 𝑘) ∈ ℤ → ((𝑁 − 𝑘) − 1) ∈ ℤ) | |
18 | 1exp 14142 | . . . . . . 7 ⊢ (((𝑁 − 𝑘) − 1) ∈ ℤ → (1↑((𝑁 − 𝑘) − 1)) = 1) | |
19 | 16, 17, 18 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (1↑((𝑁 − 𝑘) − 1)) = 1) |
20 | 19 | oveq2d 7464 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = ((𝐴↑𝑘) · 1)) |
21 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ) |
22 | elfzonn0 13761 | . . . . . . . 8 ⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0) | |
23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0) |
24 | 21, 23 | expcld 14196 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
25 | 24 | mulridd 11307 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
26 | 20, 25 | eqtrd 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = (𝐴↑𝑘)) |
27 | 12, 26 | sumeq12dv 15754 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) |
28 | 27 | oveq2d 7464 | . 2 ⊢ (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴↑𝑘) · (1↑((𝑁 − 𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
29 | 6, 10, 28 | 3eqtrd 2784 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 − cmin 11520 ℕ0cn0 12553 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 ↑cexp 14112 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 |
This theorem is referenced by: lighneallem3 47481 |
Copyright terms: Public domain | W3C validator |