MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwm1geoser Structured version   Visualization version   GIF version

Theorem pwm1geoser 15794
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Proof shortened by AV, 19-Aug-2021.)
Hypotheses
Ref Expression
pwm1geoser.a (𝜑𝐴 ∈ ℂ)
pwm1geoser.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
pwm1geoser (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwm1geoser
StepHypRef Expression
1 pwm1geoser.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0zd 12515 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 1exp 14016 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
42, 3syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
54eqcomd 2735 . . 3 (𝜑 → 1 = (1↑𝑁))
65oveq2d 7369 . 2 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴𝑁) − (1↑𝑁)))
7 pwm1geoser.a . . 3 (𝜑𝐴 ∈ ℂ)
8 1cnd 11129 . . 3 (𝜑 → 1 ∈ ℂ)
9 pwdif 15793 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
101, 7, 8, 9syl3anc 1373 . 2 (𝜑 → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
11 fzoval 13581 . . . . 5 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
122, 11syl 17 . . . 4 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
132adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
14 elfzoelz 13580 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
1514adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1613, 15zsubcld 12603 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑁𝑘) ∈ ℤ)
17 peano2zm 12536 . . . . . . 7 ((𝑁𝑘) ∈ ℤ → ((𝑁𝑘) − 1) ∈ ℤ)
18 1exp 14016 . . . . . . 7 (((𝑁𝑘) − 1) ∈ ℤ → (1↑((𝑁𝑘) − 1)) = 1)
1916, 17, 183syl 18 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (1↑((𝑁𝑘) − 1)) = 1)
2019oveq2d 7369 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = ((𝐴𝑘) · 1))
217adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ)
22 elfzonn0 13628 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0)
2322adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
2421, 23expcld 14071 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴𝑘) ∈ ℂ)
2524mulridd 11151 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2620, 25eqtrd 2764 . . . 4 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = (𝐴𝑘))
2712, 26sumeq12dv 15631 . . 3 (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
2827oveq2d 7369 . 2 (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
296, 10, 283eqtrd 2768 1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   · cmul 11033  cmin 11365  0cn0 12402  cz 12489  ...cfz 13428  ..^cfzo 13575  cexp 13986  Σcsu 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612
This theorem is referenced by:  lighneallem3  47592
  Copyright terms: Public domain W3C validator