![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lidlmmgm | Structured version Visualization version GIF version |
Description: The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
lidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
lidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
Ref | Expression |
---|---|
lidlmmgm | ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | . . . . . . . 8 ⊢ 𝐿 = (LIdeal‘𝑅) | |
2 | lidlabl.i | . . . . . . . 8 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
3 | 1, 2 | lidlbas 43694 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
4 | eleq1a 2880 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿)) | |
5 | 3, 4 | mpd 15 | . . . . . 6 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
6 | 5 | anim2i 616 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
7 | 6 | adantr 481 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
8 | 1, 2 | lidlssbas 43693 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
9 | 8 | adantl 482 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (Base‘𝐼) ⊆ (Base‘𝑅)) |
10 | 9 | sseld 3894 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
11 | 10 | com12 32 | . . . . . 6 ⊢ (𝑎 ∈ (Base‘𝐼) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
12 | 11 | adantr 481 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
13 | 12 | impcom 408 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅)) |
14 | simprr 769 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝐼)) | |
15 | eqid 2797 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2797 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | 1, 15, 16 | lidlmcl 19683 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
18 | 7, 13, 14, 17 | syl12anc 833 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
19 | 18 | ralrimivva 3160 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
20 | fvex 6558 | . . . 4 ⊢ (mulGrp‘𝐼) ∈ V | |
21 | eqid 2797 | . . . . . 6 ⊢ (mulGrp‘𝐼) = (mulGrp‘𝐼) | |
22 | eqid 2797 | . . . . . 6 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
23 | 21, 22 | mgpbas 18939 | . . . . 5 ⊢ (Base‘𝐼) = (Base‘(mulGrp‘𝐼)) |
24 | eqid 2797 | . . . . . 6 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
25 | 21, 24 | mgpplusg 18937 | . . . . 5 ⊢ (.r‘𝐼) = (+g‘(mulGrp‘𝐼)) |
26 | 23, 25 | ismgm 17686 | . . . 4 ⊢ ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
27 | 20, 26 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
28 | 2, 16 | ressmulr 16458 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
29 | 28 | eqcomd 2803 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
30 | 29 | adantl 482 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (.r‘𝐼) = (.r‘𝑅)) |
31 | 30 | oveqdr 7051 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
32 | 31 | eleq1d 2869 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
33 | 32 | 2ralbidva 3167 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
34 | 27, 33 | bitrd 280 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
35 | 19, 34 | mpbird 258 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∀wral 3107 Vcvv 3440 ⊆ wss 3865 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 ↾s cress 16317 .rcmulr 16399 Mgmcmgm 17683 mulGrpcmgp 18933 Ringcrg 18991 LIdealclidl 19636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-ip 16416 df-0g 16548 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-grp 17868 df-minusg 17869 df-sbg 17870 df-subg 18034 df-mgp 18934 df-ur 18946 df-ring 18993 df-subrg 19227 df-lmod 19330 df-lss 19398 df-sra 19638 df-rgmod 19639 df-lidl 19640 |
This theorem is referenced by: lidlmsgrp 43697 |
Copyright terms: Public domain | W3C validator |