Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lidlmmgm | Structured version Visualization version GIF version |
Description: The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
lidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
lidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
Ref | Expression |
---|---|
lidlmmgm | ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | . . . . . . . 8 ⊢ 𝐿 = (LIdeal‘𝑅) | |
2 | lidlabl.i | . . . . . . . 8 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
3 | 1, 2 | lidlbas 45015 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
4 | eleq1a 2828 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿)) | |
5 | 3, 4 | mpd 15 | . . . . . 6 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
6 | 5 | anim2i 620 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
7 | 6 | adantr 484 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
8 | 1, 2 | lidlssbas 45014 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
9 | 8 | adantl 485 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (Base‘𝐼) ⊆ (Base‘𝑅)) |
10 | 9 | sseld 3876 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
11 | 10 | com12 32 | . . . . . 6 ⊢ (𝑎 ∈ (Base‘𝐼) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
12 | 11 | adantr 484 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
13 | 12 | impcom 411 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅)) |
14 | simprr 773 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝐼)) | |
15 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2738 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | 1, 15, 16 | lidlmcl 20109 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
18 | 7, 13, 14, 17 | syl12anc 836 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
19 | 18 | ralrimivva 3103 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
20 | fvex 6687 | . . . 4 ⊢ (mulGrp‘𝐼) ∈ V | |
21 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘𝐼) = (mulGrp‘𝐼) | |
22 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
23 | 21, 22 | mgpbas 19364 | . . . . 5 ⊢ (Base‘𝐼) = (Base‘(mulGrp‘𝐼)) |
24 | eqid 2738 | . . . . . 6 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
25 | 21, 24 | mgpplusg 19362 | . . . . 5 ⊢ (.r‘𝐼) = (+g‘(mulGrp‘𝐼)) |
26 | 23, 25 | ismgm 17969 | . . . 4 ⊢ ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
27 | 20, 26 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
28 | 2, 16 | ressmulr 16728 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
29 | 28 | eqcomd 2744 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
30 | 29 | adantl 485 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (.r‘𝐼) = (.r‘𝑅)) |
31 | 30 | oveqdr 7198 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
32 | 31 | eleq1d 2817 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
33 | 32 | 2ralbidva 3110 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
34 | 27, 33 | bitrd 282 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
35 | 19, 34 | mpbird 260 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 ⊆ wss 3843 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 ↾s cress 16587 .rcmulr 16669 Mgmcmgm 17966 mulGrpcmgp 19358 Ringcrg 19416 LIdealclidl 20061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-sca 16684 df-vsca 16685 df-ip 16686 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-minusg 18223 df-sbg 18224 df-subg 18394 df-mgp 19359 df-ur 19371 df-ring 19418 df-subrg 19652 df-lmod 19755 df-lss 19823 df-sra 20063 df-rgmod 20064 df-lidl 20065 |
This theorem is referenced by: lidlmsgrp 45018 |
Copyright terms: Public domain | W3C validator |