Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlmsgrp Structured version   Visualization version   GIF version

Theorem lidlmsgrp 45047
Description: The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlmsgrp ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)

Proof of Theorem lidlmsgrp
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . 3 𝐿 = (LIdeal‘𝑅)
2 lidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
31, 2lidlmmgm 45046 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)
4 eqid 2738 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54ringmgp 19424 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
65ad2antrr 726 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (mulGrp‘𝑅) ∈ Mnd)
71, 2lidlssbas 45043 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
87sseld 3876 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
97sseld 3876 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
107sseld 3876 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
118, 9, 103anim123d 1444 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1211adantl 485 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1312imp 410 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
14 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
154, 14mgpbas 19366 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
16 eqid 2738 . . . . . . 7 (.r𝑅) = (.r𝑅)
174, 16mgpplusg 19364 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
1815, 17mndass 18038 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
196, 13, 18syl2anc 587 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
2019ralrimivvva 3104 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
212, 16ressmulr 16730 . . . . . . . . 9 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2221eqcomd 2744 . . . . . . . 8 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
2322oveqd 7189 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
24 eqidd 2739 . . . . . . . 8 (𝑈𝐿𝑐 = 𝑐)
2522, 23, 24oveq123d 7193 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐))
26 eqidd 2739 . . . . . . . 8 (𝑈𝐿𝑎 = 𝑎)
2722oveqd 7189 . . . . . . . 8 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
2822, 26, 27oveq123d 7193 . . . . . . 7 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
2925, 28eqeq12d 2754 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3029adantl 485 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3130ralbidv 3109 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
32312ralbidv 3111 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3320, 32mpbird 260 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)))
34 eqid 2738 . . . 4 (mulGrp‘𝐼) = (mulGrp‘𝐼)
35 eqid 2738 . . . 4 (Base‘𝐼) = (Base‘𝐼)
3634, 35mgpbas 19366 . . 3 (Base‘𝐼) = (Base‘(mulGrp‘𝐼))
37 eqid 2738 . . . 4 (.r𝐼) = (.r𝐼)
3834, 37mgpplusg 19364 . . 3 (.r𝐼) = (+g‘(mulGrp‘𝐼))
3936, 38issgrp 18020 . 2 ((mulGrp‘𝐼) ∈ Smgrp ↔ ((mulGrp‘𝐼) ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐))))
403, 33, 39sylanbrc 586 1 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  cfv 6339  (class class class)co 7172  Basecbs 16588  s cress 16589  .rcmulr 16671  Mgmcmgm 17968  Smgrpcsgrp 18018  Mndcmnd 18029  mulGrpcmgp 19360  Ringcrg 19418  LIdealclidl 20063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-2 11781  df-3 11782  df-4 11783  df-5 11784  df-6 11785  df-7 11786  df-8 11787  df-ndx 16591  df-slot 16592  df-base 16594  df-sets 16595  df-ress 16596  df-plusg 16683  df-mulr 16684  df-sca 16686  df-vsca 16687  df-ip 16688  df-0g 16820  df-mgm 17970  df-sgrp 18019  df-mnd 18030  df-grp 18224  df-minusg 18225  df-sbg 18226  df-subg 18396  df-mgp 19361  df-ur 19373  df-ring 19420  df-subrg 19654  df-lmod 19757  df-lss 19825  df-sra 20065  df-rgmod 20066  df-lidl 20067
This theorem is referenced by:  lidlrng  45048
  Copyright terms: Public domain W3C validator