Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlmsgrp Structured version   Visualization version   GIF version

Theorem lidlmsgrp 44550
Description: The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlmsgrp ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)

Proof of Theorem lidlmsgrp
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . 3 𝐿 = (LIdeal‘𝑅)
2 lidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
31, 2lidlmmgm 44549 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)
4 eqid 2798 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54ringmgp 19296 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
65ad2antrr 725 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (mulGrp‘𝑅) ∈ Mnd)
71, 2lidlssbas 44546 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
87sseld 3914 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
97sseld 3914 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
107sseld 3914 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
118, 9, 103anim123d 1440 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1211adantl 485 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1312imp 410 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
14 eqid 2798 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
154, 14mgpbas 19238 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
16 eqid 2798 . . . . . . 7 (.r𝑅) = (.r𝑅)
174, 16mgpplusg 19236 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
1815, 17mndass 17912 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
196, 13, 18syl2anc 587 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
2019ralrimivvva 3157 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
212, 16ressmulr 16617 . . . . . . . . 9 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2221eqcomd 2804 . . . . . . . 8 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
2322oveqd 7152 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
24 eqidd 2799 . . . . . . . 8 (𝑈𝐿𝑐 = 𝑐)
2522, 23, 24oveq123d 7156 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐))
26 eqidd 2799 . . . . . . . 8 (𝑈𝐿𝑎 = 𝑎)
2722oveqd 7152 . . . . . . . 8 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
2822, 26, 27oveq123d 7156 . . . . . . 7 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
2925, 28eqeq12d 2814 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3029adantl 485 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3130ralbidv 3162 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
32312ralbidv 3164 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3320, 32mpbird 260 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)))
34 eqid 2798 . . . 4 (mulGrp‘𝐼) = (mulGrp‘𝐼)
35 eqid 2798 . . . 4 (Base‘𝐼) = (Base‘𝐼)
3634, 35mgpbas 19238 . . 3 (Base‘𝐼) = (Base‘(mulGrp‘𝐼))
37 eqid 2798 . . . 4 (.r𝐼) = (.r𝐼)
3834, 37mgpplusg 19236 . . 3 (.r𝐼) = (+g‘(mulGrp‘𝐼))
3936, 38issgrp 17894 . 2 ((mulGrp‘𝐼) ∈ Smgrp ↔ ((mulGrp‘𝐼) ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐))))
403, 33, 39sylanbrc 586 1 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  .rcmulr 16558  Mgmcmgm 17842  Smgrpcsgrp 17892  Mndcmnd 17903  mulGrpcmgp 19232  Ringcrg 19290  LIdealclidl 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-lidl 19939
This theorem is referenced by:  lidlrng  44551
  Copyright terms: Public domain W3C validator