| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrshpor | Structured version Visualization version GIF version | ||
| Description: The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| lkrshpor.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrshpor.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lkrshpor.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrshpor.k | ⊢ 𝐾 = (LKer‘𝑊) |
| lkrshpor.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrshpor.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lkrshpor | ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrshpor.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21047 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | lkrshpor.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 7 | lkrshpor.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lkrshpor.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | lkrshpor.k | . . . . . 6 ⊢ 𝐾 = (LKer‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | lkr0f 39082 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))}))) |
| 11 | 3, 4, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))}))) |
| 12 | 11 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾‘𝐺) = 𝑉) |
| 13 | 12 | olcd 874 | . 2 ⊢ ((𝜑 ∧ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})) → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| 14 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec) |
| 15 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝐺 ∈ 𝐹) |
| 16 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) | |
| 17 | lkrshpor.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 18 | 7, 5, 6, 17, 8, 9 | lkrshp 39093 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾‘𝐺) ∈ 𝐻) |
| 19 | 14, 15, 16, 18 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾‘𝐺) ∈ 𝐻) |
| 20 | 19 | orcd 873 | . 2 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| 21 | 13, 20 | pm2.61dane 3012 | 1 ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4585 × cxp 5629 ‘cfv 6500 Basecbs 17157 Scalarcsca 17201 0gc0g 17380 LModclmod 20800 LVecclvec 21043 LSHypclsh 38963 LFnlclfn 39045 LKerclk 39073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-tpos 8183 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-er 8649 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-0g 17382 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-subg 19039 df-cntz 19233 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-drng 20653 df-lmod 20802 df-lss 20872 df-lsp 20912 df-lvec 21044 df-lshyp 38965 df-lfl 39046 df-lkr 39074 |
| This theorem is referenced by: lkrshp4 39096 lkrpssN 39151 dochlkr 41374 dochkrshp 41375 lclkrlem2e 41500 lclkrlem2h 41503 lclkrlem2s 41514 |
| Copyright terms: Public domain | W3C validator |