Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshpor Structured version   Visualization version   GIF version

Theorem lkrshpor 37048
Description: The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
lkrshpor.v 𝑉 = (Base‘𝑊)
lkrshpor.h 𝐻 = (LSHyp‘𝑊)
lkrshpor.f 𝐹 = (LFnl‘𝑊)
lkrshpor.k 𝐾 = (LKer‘𝑊)
lkrshpor.w (𝜑𝑊 ∈ LVec)
lkrshpor.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lkrshpor (𝜑 → ((𝐾𝐺) ∈ 𝐻 ∨ (𝐾𝐺) = 𝑉))

Proof of Theorem lkrshpor
StepHypRef Expression
1 lkrshpor.w . . . . . 6 (𝜑𝑊 ∈ LVec)
2 lveclmod 20283 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
4 lkrshpor.g . . . . 5 (𝜑𝐺𝐹)
5 eqid 2738 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2738 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
7 lkrshpor.v . . . . . 6 𝑉 = (Base‘𝑊)
8 lkrshpor.f . . . . . 6 𝐹 = (LFnl‘𝑊)
9 lkrshpor.k . . . . . 6 𝐾 = (LKer‘𝑊)
105, 6, 7, 8, 9lkr0f 37035 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
113, 4, 10syl2anc 583 . . . 4 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
1211biimpar 477 . . 3 ((𝜑𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾𝐺) = 𝑉)
1312olcd 870 . 2 ((𝜑𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})) → ((𝐾𝐺) ∈ 𝐻 ∨ (𝐾𝐺) = 𝑉))
141adantr 480 . . . 4 ((𝜑𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec)
154adantr 480 . . . 4 ((𝜑𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝐺𝐹)
16 simpr 484 . . . 4 ((𝜑𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))}))
17 lkrshpor.h . . . . 5 𝐻 = (LSHyp‘𝑊)
187, 5, 6, 17, 8, 9lkrshp 37046 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾𝐺) ∈ 𝐻)
1914, 15, 16, 18syl3anc 1369 . . 3 ((𝜑𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾𝐺) ∈ 𝐻)
2019orcd 869 . 2 ((𝜑𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → ((𝐾𝐺) ∈ 𝐻 ∨ (𝐾𝐺) = 𝑉))
2113, 20pm2.61dane 3031 1 (𝜑 → ((𝐾𝐺) ∈ 𝐻 ∨ (𝐾𝐺) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  {csn 4558   × cxp 5578  cfv 6418  Basecbs 16840  Scalarcsca 16891  0gc0g 17067  LModclmod 20038  LVecclvec 20279  LSHypclsh 36916  LFnlclfn 36998  LKerclk 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918  df-lfl 36999  df-lkr 37027
This theorem is referenced by:  lkrshp4  37049  lkrpssN  37104  dochlkr  39326  dochkrshp  39327  lclkrlem2e  39452  lclkrlem2h  39455  lclkrlem2s  39466
  Copyright terms: Public domain W3C validator