| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrshpor | Structured version Visualization version GIF version | ||
| Description: The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| lkrshpor.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrshpor.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lkrshpor.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrshpor.k | ⊢ 𝐾 = (LKer‘𝑊) |
| lkrshpor.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrshpor.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lkrshpor | ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrshpor.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21033 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | lkrshpor.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 5 | eqid 2730 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 7 | lkrshpor.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lkrshpor.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | lkrshpor.k | . . . . . 6 ⊢ 𝐾 = (LKer‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | lkr0f 39112 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))}))) |
| 11 | 3, 4, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))}))) |
| 12 | 11 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾‘𝐺) = 𝑉) |
| 13 | 12 | olcd 874 | . 2 ⊢ ((𝜑 ∧ 𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})) → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| 14 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec) |
| 15 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝐺 ∈ 𝐹) |
| 16 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) | |
| 17 | lkrshpor.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 18 | 7, 5, 6, 17, 8, 9 | lkrshp 39123 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾‘𝐺) ∈ 𝐻) |
| 19 | 14, 15, 16, 18 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → (𝐾‘𝐺) ∈ 𝐻) |
| 20 | 19 | orcd 873 | . 2 ⊢ ((𝜑 ∧ 𝐺 ≠ (𝑉 × {(0g‘(Scalar‘𝑊))})) → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| 21 | 13, 20 | pm2.61dane 3013 | 1 ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 {csn 4574 × cxp 5612 ‘cfv 6477 Basecbs 17112 Scalarcsca 17156 0gc0g 17335 LModclmod 20786 LVecclvec 21029 LSHypclsh 38993 LFnlclfn 39075 LKerclk 39103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-cntz 19222 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lvec 21030 df-lshyp 38995 df-lfl 39076 df-lkr 39104 |
| This theorem is referenced by: lkrshp4 39126 lkrpssN 39181 dochlkr 41403 dochkrshp 41404 lclkrlem2e 41529 lclkrlem2h 41532 lclkrlem2s 41543 |
| Copyright terms: Public domain | W3C validator |