![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochsnkr | Structured version Visualization version GIF version |
Description: A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015.) |
Ref | Expression |
---|---|
dochsnkr.h | β’ π» = (LHypβπΎ) |
dochsnkr.o | β’ β₯ = ((ocHβπΎ)βπ) |
dochsnkr.u | β’ π = ((DVecHβπΎ)βπ) |
dochsnkr.v | β’ π = (Baseβπ) |
dochsnkr.z | β’ 0 = (0gβπ) |
dochsnkr.f | β’ πΉ = (LFnlβπ) |
dochsnkr.l | β’ πΏ = (LKerβπ) |
dochsnkr.k | β’ (π β (πΎ β HL β§ π β π»)) |
dochsnkr.g | β’ (π β πΊ β πΉ) |
dochsnkr.x | β’ (π β π β (( β₯ β(πΏβπΊ)) β { 0 })) |
Ref | Expression |
---|---|
dochsnkr | β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochsnkr.z | . . . 4 β’ 0 = (0gβπ) | |
2 | eqid 2726 | . . . 4 β’ (LSpanβπ) = (LSpanβπ) | |
3 | eqid 2726 | . . . 4 β’ (LSAtomsβπ) = (LSAtomsβπ) | |
4 | dochsnkr.h | . . . . 5 β’ π» = (LHypβπΎ) | |
5 | dochsnkr.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
6 | dochsnkr.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
7 | 4, 5, 6 | dvhlvec 40492 | . . . 4 β’ (π β π β LVec) |
8 | dochsnkr.o | . . . . 5 β’ β₯ = ((ocHβπΎ)βπ) | |
9 | dochsnkr.v | . . . . 5 β’ π = (Baseβπ) | |
10 | dochsnkr.f | . . . . 5 β’ πΉ = (LFnlβπ) | |
11 | dochsnkr.l | . . . . 5 β’ πΏ = (LKerβπ) | |
12 | dochsnkr.g | . . . . 5 β’ (π β πΊ β πΉ) | |
13 | dochsnkr.x | . . . . 5 β’ (π β π β (( β₯ β(πΏβπΊ)) β { 0 })) | |
14 | 4, 8, 5, 9, 1, 10, 11, 6, 12, 13, 3 | dochsnkrlem2 40853 | . . . 4 β’ (π β ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) |
15 | 13 | eldifad 3955 | . . . 4 β’ (π β π β ( β₯ β(πΏβπΊ))) |
16 | eldifsni 4788 | . . . . 5 β’ (π β (( β₯ β(πΏβπΊ)) β { 0 }) β π β 0 ) | |
17 | 13, 16 | syl 17 | . . . 4 β’ (π β π β 0 ) |
18 | 1, 2, 3, 7, 14, 15, 17 | lsatel 38387 | . . 3 β’ (π β ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π})) |
19 | 18 | fveq2d 6888 | . 2 β’ (π β ( β₯ β( β₯ β(πΏβπΊ))) = ( β₯ β((LSpanβπ)β{π}))) |
20 | 4, 8, 5, 9, 1, 10, 11, 6, 12, 13 | dochsnkrlem3 40854 | . 2 β’ (π β ( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ)) |
21 | 4, 5, 6 | dvhlmod 40493 | . . . . . . . 8 β’ (π β π β LMod) |
22 | 9, 10, 11, 21, 12 | lkrssv 38478 | . . . . . . 7 β’ (π β (πΏβπΊ) β π) |
23 | 4, 5, 9, 8 | dochssv 40738 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ (πΏβπΊ) β π) β ( β₯ β(πΏβπΊ)) β π) |
24 | 6, 22, 23 | syl2anc 583 | . . . . . 6 β’ (π β ( β₯ β(πΏβπΊ)) β π) |
25 | 24 | ssdifssd 4137 | . . . . 5 β’ (π β (( β₯ β(πΏβπΊ)) β { 0 }) β π) |
26 | 25, 13 | sseldd 3978 | . . . 4 β’ (π β π β π) |
27 | 26 | snssd 4807 | . . 3 β’ (π β {π} β π) |
28 | 4, 5, 8, 9, 2, 6, 27 | dochocsp 40762 | . 2 β’ (π β ( β₯ β((LSpanβπ)β{π})) = ( β₯ β{π})) |
29 | 19, 20, 28 | 3eqtr3d 2774 | 1 β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β cdif 3940 β wss 3943 {csn 4623 βcfv 6536 Basecbs 17150 0gc0g 17391 LSpanclspn 20815 LSAtomsclsa 38356 LFnlclfn 38439 LKerclk 38467 HLchlt 38732 LHypclh 39367 DVecHcdvh 40461 ocHcoch 40730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-riotaBAD 38335 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-undef 8256 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-0g 17393 df-proset 18257 df-poset 18275 df-plt 18292 df-lub 18308 df-glb 18309 df-join 18310 df-meet 18311 df-p0 18387 df-p1 18388 df-lat 18394 df-clat 18461 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-grp 18863 df-minusg 18864 df-sbg 18865 df-subg 19047 df-cntz 19230 df-lsm 19553 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-dvr 20300 df-drng 20586 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lvec 20948 df-lsatoms 38358 df-lshyp 38359 df-lfl 38440 df-lkr 38468 df-oposet 38558 df-ol 38560 df-oml 38561 df-covers 38648 df-ats 38649 df-atl 38680 df-cvlat 38704 df-hlat 38733 df-llines 38881 df-lplanes 38882 df-lvols 38883 df-lines 38884 df-psubsp 38886 df-pmap 38887 df-padd 39179 df-lhyp 39371 df-laut 39372 df-ldil 39487 df-ltrn 39488 df-trl 39542 df-tgrp 40126 df-tendo 40138 df-edring 40140 df-dveca 40386 df-disoa 40412 df-dvech 40462 df-dib 40522 df-dic 40556 df-dih 40612 df-doch 40731 df-djh 40778 |
This theorem is referenced by: dochfln0 40860 lcfl6lem 40881 |
Copyright terms: Public domain | W3C validator |