| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochsnkr | Structured version Visualization version GIF version | ||
| Description: A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015.) |
| Ref | Expression |
|---|---|
| dochsnkr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochsnkr.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochsnkr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochsnkr.v | ⊢ 𝑉 = (Base‘𝑈) |
| dochsnkr.z | ⊢ 0 = (0g‘𝑈) |
| dochsnkr.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| dochsnkr.l | ⊢ 𝐿 = (LKer‘𝑈) |
| dochsnkr.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochsnkr.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| dochsnkr.x | ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
| Ref | Expression |
|---|---|
| dochsnkr | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochsnkr.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 2 | eqid 2729 | . . . 4 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
| 3 | eqid 2729 | . . . 4 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 4 | dochsnkr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dochsnkr.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | dochsnkr.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 4, 5, 6 | dvhlvec 41076 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 8 | dochsnkr.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 9 | dochsnkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 10 | dochsnkr.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 11 | dochsnkr.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
| 12 | dochsnkr.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 13 | dochsnkr.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | |
| 14 | 4, 8, 5, 9, 1, 10, 11, 6, 12, 13, 3 | dochsnkrlem2 41437 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈)) |
| 15 | 13 | eldifad 3923 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
| 16 | eldifsni 4750 | . . . . 5 ⊢ (𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) → 𝑋 ≠ 0 ) | |
| 17 | 13, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 18 | 1, 2, 3, 7, 14, 15, 17 | lsatel 38971 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) = ((LSpan‘𝑈)‘{𝑋})) |
| 19 | 18 | fveq2d 6844 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘((LSpan‘𝑈)‘{𝑋}))) |
| 20 | 4, 8, 5, 9, 1, 10, 11, 6, 12, 13 | dochsnkrlem3 41438 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 21 | 4, 5, 6 | dvhlmod 41077 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 22 | 9, 10, 11, 21, 12 | lkrssv 39062 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
| 23 | 4, 5, 9, 8 | dochssv 41322 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
| 24 | 6, 22, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) |
| 25 | 24 | ssdifssd 4106 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) ⊆ 𝑉) |
| 26 | 25, 13 | sseldd 3944 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 27 | 26 | snssd 4769 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 28 | 4, 5, 8, 9, 2, 6, 27 | dochocsp 41346 | . 2 ⊢ (𝜑 → ( ⊥ ‘((LSpan‘𝑈)‘{𝑋})) = ( ⊥ ‘{𝑋})) |
| 29 | 19, 20, 28 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 ‘cfv 6499 Basecbs 17155 0gc0g 17378 LSpanclspn 20853 LSAtomsclsa 38940 LFnlclfn 39023 LKerclk 39051 HLchlt 39316 LHypclh 39951 DVecHcdvh 41045 ocHcoch 41314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lsatoms 38942 df-lshyp 38943 df-lfl 39024 df-lkr 39052 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tgrp 40710 df-tendo 40722 df-edring 40724 df-dveca 40970 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 df-doch 41315 df-djh 41362 |
| This theorem is referenced by: dochfln0 41444 lcfl6lem 41465 |
| Copyright terms: Public domain | W3C validator |