Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdcnvatN Structured version   Visualization version   GIF version

Theorem mapdcnvatN 41660
Description: Atoms are preserved by the map defined by df-mapd 41619. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdat.h 𝐻 = (LHyp‘𝐾)
mapdat.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdat.a 𝐴 = (LSAtoms‘𝑈)
mapdat.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdat.b 𝐵 = (LSAtoms‘𝐶)
mapdat.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdcnvat.q (𝜑𝑄𝐵)
Assertion
Ref Expression
mapdcnvatN (𝜑 → (𝑀𝑄) ∈ 𝐴)

Proof of Theorem mapdcnvatN
StepHypRef Expression
1 mapdat.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 mapdat.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2729 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdat.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 41104 . . . . . 6 (𝜑𝑈 ∈ LMod)
7 eqid 2729 . . . . . . 7 (0g𝑈) = (0g𝑈)
87, 4lsssn0 20854 . . . . . 6 (𝑈 ∈ LMod → {(0g𝑈)} ∈ (LSubSp‘𝑈))
96, 8syl 17 . . . . 5 (𝜑 → {(0g𝑈)} ∈ (LSubSp‘𝑈))
101, 2, 3, 4, 5, 9mapdcnvid1N 41648 . . . 4 (𝜑 → (𝑀‘(𝑀‘{(0g𝑈)})) = {(0g𝑈)})
11 mapdat.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
12 eqid 2729 . . . . . 6 (0g𝐶) = (0g𝐶)
131, 2, 3, 7, 11, 12, 5mapd0 41659 . . . . 5 (𝜑 → (𝑀‘{(0g𝑈)}) = {(0g𝐶)})
1413fveq2d 6862 . . . 4 (𝜑 → (𝑀‘(𝑀‘{(0g𝑈)})) = (𝑀‘{(0g𝐶)}))
1510, 14eqtr3d 2766 . . 3 (𝜑 → {(0g𝑈)} = (𝑀‘{(0g𝐶)}))
16 mapdat.b . . . . . 6 𝐵 = (LSAtoms‘𝐶)
17 eqid 2729 . . . . . 6 ( ⋖L𝐶) = ( ⋖L𝐶)
181, 11, 5lcdlvec 41585 . . . . . 6 (𝜑𝐶 ∈ LVec)
19 mapdcnvat.q . . . . . 6 (𝜑𝑄𝐵)
2012, 16, 17, 18, 19lsatcv0 39024 . . . . 5 (𝜑 → {(0g𝐶)} ( ⋖L𝐶)𝑄)
211, 11, 5lcdlmod 41586 . . . . . . . 8 (𝜑𝐶 ∈ LMod)
22 eqid 2729 . . . . . . . . 9 (LSubSp‘𝐶) = (LSubSp‘𝐶)
2312, 22lsssn0 20854 . . . . . . . 8 (𝐶 ∈ LMod → {(0g𝐶)} ∈ (LSubSp‘𝐶))
2421, 23syl 17 . . . . . . 7 (𝜑 → {(0g𝐶)} ∈ (LSubSp‘𝐶))
251, 2, 11, 22, 5mapdrn2 41645 . . . . . . 7 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
2624, 25eleqtrrd 2831 . . . . . 6 (𝜑 → {(0g𝐶)} ∈ ran 𝑀)
271, 2, 5, 26mapdcnvid2 41651 . . . . 5 (𝜑 → (𝑀‘(𝑀‘{(0g𝐶)})) = {(0g𝐶)})
2822, 16, 21, 19lsatlssel 38990 . . . . . . 7 (𝜑𝑄 ∈ (LSubSp‘𝐶))
2928, 25eleqtrrd 2831 . . . . . 6 (𝜑𝑄 ∈ ran 𝑀)
301, 2, 5, 29mapdcnvid2 41651 . . . . 5 (𝜑 → (𝑀‘(𝑀𝑄)) = 𝑄)
3120, 27, 303brtr4d 5139 . . . 4 (𝜑 → (𝑀‘(𝑀‘{(0g𝐶)}))( ⋖L𝐶)(𝑀‘(𝑀𝑄)))
32 eqid 2729 . . . . 5 ( ⋖L𝑈) = ( ⋖L𝑈)
331, 2, 3, 4, 5, 26mapdcnvcl 41646 . . . . 5 (𝜑 → (𝑀‘{(0g𝐶)}) ∈ (LSubSp‘𝑈))
341, 2, 3, 4, 5, 29mapdcnvcl 41646 . . . . 5 (𝜑 → (𝑀𝑄) ∈ (LSubSp‘𝑈))
351, 2, 3, 4, 32, 11, 17, 5, 33, 34mapdcv 41654 . . . 4 (𝜑 → ((𝑀‘{(0g𝐶)})( ⋖L𝑈)(𝑀𝑄) ↔ (𝑀‘(𝑀‘{(0g𝐶)}))( ⋖L𝐶)(𝑀‘(𝑀𝑄))))
3631, 35mpbird 257 . . 3 (𝜑 → (𝑀‘{(0g𝐶)})( ⋖L𝑈)(𝑀𝑄))
3715, 36eqbrtrd 5129 . 2 (𝜑 → {(0g𝑈)} ( ⋖L𝑈)(𝑀𝑄))
38 mapdat.a . . 3 𝐴 = (LSAtoms‘𝑈)
391, 3, 5dvhlvec 41103 . . 3 (𝜑𝑈 ∈ LVec)
407, 4, 38, 32, 39, 34lsat0cv 39026 . 2 (𝜑 → ((𝑀𝑄) ∈ 𝐴 ↔ {(0g𝑈)} ( ⋖L𝑈)(𝑀𝑄)))
4137, 40mpbird 257 1 (𝜑 → (𝑀𝑄) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589   class class class wbr 5107  ccnv 5637  ran crn 5639  cfv 6511  0gc0g 17402  LModclmod 20766  LSubSpclss 20837  LSAtomsclsa 38967  L clcv 39011  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580  mapdcmpd 41618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-nzr 20422  df-rlreg 20603  df-domn 20604  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-lshyp 38970  df-lcv 39012  df-lfl 39051  df-lkr 39079  df-ldual 39117  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tgrp 40737  df-tendo 40749  df-edring 40751  df-dveca 40997  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342  df-djh 41389  df-lcdual 41581  df-mapd 41619
This theorem is referenced by:  hdmaprnlem3eN  41852  hdmaprnlem16N  41856
  Copyright terms: Public domain W3C validator