| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdcnvatN | Structured version Visualization version GIF version | ||
| Description: Atoms are preserved by the map defined by df-mapd 41643. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdat.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdat.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| mapdat.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdat.b | ⊢ 𝐵 = (LSAtoms‘𝐶) |
| mapdat.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdcnvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapdcnvatN | ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdat.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 3 | mapdat.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 5 | mapdat.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | 1, 3, 5 | dvhlmod 41128 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 8 | 7, 4 | lsssn0 20874 | . . . . . 6 ⊢ (𝑈 ∈ LMod → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 10 | 1, 2, 3, 4, 5, 9 | mapdcnvid1N 41672 | . . . 4 ⊢ (𝜑 → (◡𝑀‘(𝑀‘{(0g‘𝑈)})) = {(0g‘𝑈)}) |
| 11 | mapdat.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 12 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 13 | 1, 2, 3, 7, 11, 12, 5 | mapd0 41683 | . . . . 5 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
| 14 | 13 | fveq2d 6821 | . . . 4 ⊢ (𝜑 → (◡𝑀‘(𝑀‘{(0g‘𝑈)})) = (◡𝑀‘{(0g‘𝐶)})) |
| 15 | 10, 14 | eqtr3d 2767 | . . 3 ⊢ (𝜑 → {(0g‘𝑈)} = (◡𝑀‘{(0g‘𝐶)})) |
| 16 | mapdat.b | . . . . . 6 ⊢ 𝐵 = (LSAtoms‘𝐶) | |
| 17 | eqid 2730 | . . . . . 6 ⊢ ( ⋖L ‘𝐶) = ( ⋖L ‘𝐶) | |
| 18 | 1, 11, 5 | lcdlvec 41609 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 19 | mapdcnvat.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 20 | 12, 16, 17, 18, 19 | lsatcv0 39049 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐶)} ( ⋖L ‘𝐶)𝑄) |
| 21 | 1, 11, 5 | lcdlmod 41610 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 22 | eqid 2730 | . . . . . . . . 9 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 23 | 12, 22 | lsssn0 20874 | . . . . . . . 8 ⊢ (𝐶 ∈ LMod → {(0g‘𝐶)} ∈ (LSubSp‘𝐶)) |
| 24 | 21, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → {(0g‘𝐶)} ∈ (LSubSp‘𝐶)) |
| 25 | 1, 2, 11, 22, 5 | mapdrn2 41669 | . . . . . . 7 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
| 26 | 24, 25 | eleqtrrd 2832 | . . . . . 6 ⊢ (𝜑 → {(0g‘𝐶)} ∈ ran 𝑀) |
| 27 | 1, 2, 5, 26 | mapdcnvid2 41675 | . . . . 5 ⊢ (𝜑 → (𝑀‘(◡𝑀‘{(0g‘𝐶)})) = {(0g‘𝐶)}) |
| 28 | 22, 16, 21, 19 | lsatlssel 39015 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝐶)) |
| 29 | 28, 25 | eleqtrrd 2832 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ran 𝑀) |
| 30 | 1, 2, 5, 29 | mapdcnvid2 41675 | . . . . 5 ⊢ (𝜑 → (𝑀‘(◡𝑀‘𝑄)) = 𝑄) |
| 31 | 20, 27, 30 | 3brtr4d 5121 | . . . 4 ⊢ (𝜑 → (𝑀‘(◡𝑀‘{(0g‘𝐶)}))( ⋖L ‘𝐶)(𝑀‘(◡𝑀‘𝑄))) |
| 32 | eqid 2730 | . . . . 5 ⊢ ( ⋖L ‘𝑈) = ( ⋖L ‘𝑈) | |
| 33 | 1, 2, 3, 4, 5, 26 | mapdcnvcl 41670 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘{(0g‘𝐶)}) ∈ (LSubSp‘𝑈)) |
| 34 | 1, 2, 3, 4, 5, 29 | mapdcnvcl 41670 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ (LSubSp‘𝑈)) |
| 35 | 1, 2, 3, 4, 32, 11, 17, 5, 33, 34 | mapdcv 41678 | . . . 4 ⊢ (𝜑 → ((◡𝑀‘{(0g‘𝐶)})( ⋖L ‘𝑈)(◡𝑀‘𝑄) ↔ (𝑀‘(◡𝑀‘{(0g‘𝐶)}))( ⋖L ‘𝐶)(𝑀‘(◡𝑀‘𝑄)))) |
| 36 | 31, 35 | mpbird 257 | . . 3 ⊢ (𝜑 → (◡𝑀‘{(0g‘𝐶)})( ⋖L ‘𝑈)(◡𝑀‘𝑄)) |
| 37 | 15, 36 | eqbrtrd 5111 | . 2 ⊢ (𝜑 → {(0g‘𝑈)} ( ⋖L ‘𝑈)(◡𝑀‘𝑄)) |
| 38 | mapdat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 39 | 1, 3, 5 | dvhlvec 41127 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 40 | 7, 4, 38, 32, 39, 34 | lsat0cv 39051 | . 2 ⊢ (𝜑 → ((◡𝑀‘𝑄) ∈ 𝐴 ↔ {(0g‘𝑈)} ( ⋖L ‘𝑈)(◡𝑀‘𝑄))) |
| 41 | 37, 40 | mpbird 257 | 1 ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {csn 4574 class class class wbr 5089 ◡ccnv 5613 ran crn 5615 ‘cfv 6477 0gc0g 17335 LModclmod 20786 LSubSpclss 20857 LSAtomsclsa 38992 ⋖L clcv 39036 HLchlt 39368 LHypclh 40002 DVecHcdvh 41096 LCDualclcd 41604 mapdcmpd 41642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-undef 8198 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-0g 17337 df-mre 17480 df-mrc 17481 df-acs 17483 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-cntz 19222 df-oppg 19251 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-dvr 20312 df-nzr 20421 df-rlreg 20602 df-domn 20603 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lvec 21030 df-lsatoms 38994 df-lshyp 38995 df-lcv 39037 df-lfl 39076 df-lkr 39104 df-ldual 39142 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39516 df-lplanes 39517 df-lvols 39518 df-lines 39519 df-psubsp 39521 df-pmap 39522 df-padd 39814 df-lhyp 40006 df-laut 40007 df-ldil 40122 df-ltrn 40123 df-trl 40177 df-tgrp 40761 df-tendo 40773 df-edring 40775 df-dveca 41021 df-disoa 41047 df-dvech 41097 df-dib 41157 df-dic 41191 df-dih 41247 df-doch 41366 df-djh 41413 df-lcdual 41605 df-mapd 41643 |
| This theorem is referenced by: hdmaprnlem3eN 41876 hdmaprnlem16N 41880 |
| Copyright terms: Public domain | W3C validator |