| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdcnvatN | Structured version Visualization version GIF version | ||
| Description: Atoms are preserved by the map defined by df-mapd 41613. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdat.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdat.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| mapdat.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdat.b | ⊢ 𝐵 = (LSAtoms‘𝐶) |
| mapdat.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdcnvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapdcnvatN | ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdat.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 3 | mapdat.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 5 | mapdat.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | 1, 3, 5 | dvhlmod 41098 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 8 | 7, 4 | lsssn0 20887 | . . . . . 6 ⊢ (𝑈 ∈ LMod → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 10 | 1, 2, 3, 4, 5, 9 | mapdcnvid1N 41642 | . . . 4 ⊢ (𝜑 → (◡𝑀‘(𝑀‘{(0g‘𝑈)})) = {(0g‘𝑈)}) |
| 11 | mapdat.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 13 | 1, 2, 3, 7, 11, 12, 5 | mapd0 41653 | . . . . 5 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
| 14 | 13 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → (◡𝑀‘(𝑀‘{(0g‘𝑈)})) = (◡𝑀‘{(0g‘𝐶)})) |
| 15 | 10, 14 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → {(0g‘𝑈)} = (◡𝑀‘{(0g‘𝐶)})) |
| 16 | mapdat.b | . . . . . 6 ⊢ 𝐵 = (LSAtoms‘𝐶) | |
| 17 | eqid 2729 | . . . . . 6 ⊢ ( ⋖L ‘𝐶) = ( ⋖L ‘𝐶) | |
| 18 | 1, 11, 5 | lcdlvec 41579 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 19 | mapdcnvat.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 20 | 12, 16, 17, 18, 19 | lsatcv0 39018 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐶)} ( ⋖L ‘𝐶)𝑄) |
| 21 | 1, 11, 5 | lcdlmod 41580 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 22 | eqid 2729 | . . . . . . . . 9 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 23 | 12, 22 | lsssn0 20887 | . . . . . . . 8 ⊢ (𝐶 ∈ LMod → {(0g‘𝐶)} ∈ (LSubSp‘𝐶)) |
| 24 | 21, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → {(0g‘𝐶)} ∈ (LSubSp‘𝐶)) |
| 25 | 1, 2, 11, 22, 5 | mapdrn2 41639 | . . . . . . 7 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
| 26 | 24, 25 | eleqtrrd 2831 | . . . . . 6 ⊢ (𝜑 → {(0g‘𝐶)} ∈ ran 𝑀) |
| 27 | 1, 2, 5, 26 | mapdcnvid2 41645 | . . . . 5 ⊢ (𝜑 → (𝑀‘(◡𝑀‘{(0g‘𝐶)})) = {(0g‘𝐶)}) |
| 28 | 22, 16, 21, 19 | lsatlssel 38984 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝐶)) |
| 29 | 28, 25 | eleqtrrd 2831 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ran 𝑀) |
| 30 | 1, 2, 5, 29 | mapdcnvid2 41645 | . . . . 5 ⊢ (𝜑 → (𝑀‘(◡𝑀‘𝑄)) = 𝑄) |
| 31 | 20, 27, 30 | 3brtr4d 5134 | . . . 4 ⊢ (𝜑 → (𝑀‘(◡𝑀‘{(0g‘𝐶)}))( ⋖L ‘𝐶)(𝑀‘(◡𝑀‘𝑄))) |
| 32 | eqid 2729 | . . . . 5 ⊢ ( ⋖L ‘𝑈) = ( ⋖L ‘𝑈) | |
| 33 | 1, 2, 3, 4, 5, 26 | mapdcnvcl 41640 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘{(0g‘𝐶)}) ∈ (LSubSp‘𝑈)) |
| 34 | 1, 2, 3, 4, 5, 29 | mapdcnvcl 41640 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ (LSubSp‘𝑈)) |
| 35 | 1, 2, 3, 4, 32, 11, 17, 5, 33, 34 | mapdcv 41648 | . . . 4 ⊢ (𝜑 → ((◡𝑀‘{(0g‘𝐶)})( ⋖L ‘𝑈)(◡𝑀‘𝑄) ↔ (𝑀‘(◡𝑀‘{(0g‘𝐶)}))( ⋖L ‘𝐶)(𝑀‘(◡𝑀‘𝑄)))) |
| 36 | 31, 35 | mpbird 257 | . . 3 ⊢ (𝜑 → (◡𝑀‘{(0g‘𝐶)})( ⋖L ‘𝑈)(◡𝑀‘𝑄)) |
| 37 | 15, 36 | eqbrtrd 5124 | . 2 ⊢ (𝜑 → {(0g‘𝑈)} ( ⋖L ‘𝑈)(◡𝑀‘𝑄)) |
| 38 | mapdat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 39 | 1, 3, 5 | dvhlvec 41097 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 40 | 7, 4, 38, 32, 39, 34 | lsat0cv 39020 | . 2 ⊢ (𝜑 → ((◡𝑀‘𝑄) ∈ 𝐴 ↔ {(0g‘𝑈)} ( ⋖L ‘𝑈)(◡𝑀‘𝑄))) |
| 41 | 37, 40 | mpbird 257 | 1 ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 class class class wbr 5102 ◡ccnv 5630 ran crn 5632 ‘cfv 6499 0gc0g 17379 LModclmod 20799 LSubSpclss 20870 LSAtomsclsa 38961 ⋖L clcv 39005 HLchlt 39337 LHypclh 39972 DVecHcdvh 41066 LCDualclcd 41574 mapdcmpd 41612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-riotaBAD 38940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17381 df-mre 17524 df-mrc 17525 df-acs 17527 df-proset 18236 df-poset 18255 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18374 df-clat 18441 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19232 df-oppg 19261 df-lsm 19551 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-dvr 20322 df-nzr 20434 df-rlreg 20615 df-domn 20616 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lsatoms 38963 df-lshyp 38964 df-lcv 39006 df-lfl 39045 df-lkr 39073 df-ldual 39111 df-oposet 39163 df-ol 39165 df-oml 39166 df-covers 39253 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 df-llines 39486 df-lplanes 39487 df-lvols 39488 df-lines 39489 df-psubsp 39491 df-pmap 39492 df-padd 39784 df-lhyp 39976 df-laut 39977 df-ldil 40092 df-ltrn 40093 df-trl 40147 df-tgrp 40731 df-tendo 40743 df-edring 40745 df-dveca 40991 df-disoa 41017 df-dvech 41067 df-dib 41127 df-dic 41161 df-dih 41217 df-doch 41336 df-djh 41383 df-lcdual 41575 df-mapd 41613 |
| This theorem is referenced by: hdmaprnlem3eN 41846 hdmaprnlem16N 41850 |
| Copyright terms: Public domain | W3C validator |