Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdcnvatN Structured version   Visualization version   GIF version

Theorem mapdcnvatN 39303
Description: Atoms are preserved by the map defined by df-mapd 39262. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdat.h 𝐻 = (LHyp‘𝐾)
mapdat.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdat.a 𝐴 = (LSAtoms‘𝑈)
mapdat.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdat.b 𝐵 = (LSAtoms‘𝐶)
mapdat.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdcnvat.q (𝜑𝑄𝐵)
Assertion
Ref Expression
mapdcnvatN (𝜑 → (𝑀𝑄) ∈ 𝐴)

Proof of Theorem mapdcnvatN
StepHypRef Expression
1 mapdat.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 mapdat.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2738 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdat.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 38747 . . . . . 6 (𝜑𝑈 ∈ LMod)
7 eqid 2738 . . . . . . 7 (0g𝑈) = (0g𝑈)
87, 4lsssn0 19838 . . . . . 6 (𝑈 ∈ LMod → {(0g𝑈)} ∈ (LSubSp‘𝑈))
96, 8syl 17 . . . . 5 (𝜑 → {(0g𝑈)} ∈ (LSubSp‘𝑈))
101, 2, 3, 4, 5, 9mapdcnvid1N 39291 . . . 4 (𝜑 → (𝑀‘(𝑀‘{(0g𝑈)})) = {(0g𝑈)})
11 mapdat.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
12 eqid 2738 . . . . . 6 (0g𝐶) = (0g𝐶)
131, 2, 3, 7, 11, 12, 5mapd0 39302 . . . . 5 (𝜑 → (𝑀‘{(0g𝑈)}) = {(0g𝐶)})
1413fveq2d 6678 . . . 4 (𝜑 → (𝑀‘(𝑀‘{(0g𝑈)})) = (𝑀‘{(0g𝐶)}))
1510, 14eqtr3d 2775 . . 3 (𝜑 → {(0g𝑈)} = (𝑀‘{(0g𝐶)}))
16 mapdat.b . . . . . 6 𝐵 = (LSAtoms‘𝐶)
17 eqid 2738 . . . . . 6 ( ⋖L𝐶) = ( ⋖L𝐶)
181, 11, 5lcdlvec 39228 . . . . . 6 (𝜑𝐶 ∈ LVec)
19 mapdcnvat.q . . . . . 6 (𝜑𝑄𝐵)
2012, 16, 17, 18, 19lsatcv0 36668 . . . . 5 (𝜑 → {(0g𝐶)} ( ⋖L𝐶)𝑄)
211, 11, 5lcdlmod 39229 . . . . . . . 8 (𝜑𝐶 ∈ LMod)
22 eqid 2738 . . . . . . . . 9 (LSubSp‘𝐶) = (LSubSp‘𝐶)
2312, 22lsssn0 19838 . . . . . . . 8 (𝐶 ∈ LMod → {(0g𝐶)} ∈ (LSubSp‘𝐶))
2421, 23syl 17 . . . . . . 7 (𝜑 → {(0g𝐶)} ∈ (LSubSp‘𝐶))
251, 2, 11, 22, 5mapdrn2 39288 . . . . . . 7 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
2624, 25eleqtrrd 2836 . . . . . 6 (𝜑 → {(0g𝐶)} ∈ ran 𝑀)
271, 2, 5, 26mapdcnvid2 39294 . . . . 5 (𝜑 → (𝑀‘(𝑀‘{(0g𝐶)})) = {(0g𝐶)})
2822, 16, 21, 19lsatlssel 36634 . . . . . . 7 (𝜑𝑄 ∈ (LSubSp‘𝐶))
2928, 25eleqtrrd 2836 . . . . . 6 (𝜑𝑄 ∈ ran 𝑀)
301, 2, 5, 29mapdcnvid2 39294 . . . . 5 (𝜑 → (𝑀‘(𝑀𝑄)) = 𝑄)
3120, 27, 303brtr4d 5062 . . . 4 (𝜑 → (𝑀‘(𝑀‘{(0g𝐶)}))( ⋖L𝐶)(𝑀‘(𝑀𝑄)))
32 eqid 2738 . . . . 5 ( ⋖L𝑈) = ( ⋖L𝑈)
331, 2, 3, 4, 5, 26mapdcnvcl 39289 . . . . 5 (𝜑 → (𝑀‘{(0g𝐶)}) ∈ (LSubSp‘𝑈))
341, 2, 3, 4, 5, 29mapdcnvcl 39289 . . . . 5 (𝜑 → (𝑀𝑄) ∈ (LSubSp‘𝑈))
351, 2, 3, 4, 32, 11, 17, 5, 33, 34mapdcv 39297 . . . 4 (𝜑 → ((𝑀‘{(0g𝐶)})( ⋖L𝑈)(𝑀𝑄) ↔ (𝑀‘(𝑀‘{(0g𝐶)}))( ⋖L𝐶)(𝑀‘(𝑀𝑄))))
3631, 35mpbird 260 . . 3 (𝜑 → (𝑀‘{(0g𝐶)})( ⋖L𝑈)(𝑀𝑄))
3715, 36eqbrtrd 5052 . 2 (𝜑 → {(0g𝑈)} ( ⋖L𝑈)(𝑀𝑄))
38 mapdat.a . . 3 𝐴 = (LSAtoms‘𝑈)
391, 3, 5dvhlvec 38746 . . 3 (𝜑𝑈 ∈ LVec)
407, 4, 38, 32, 39, 34lsat0cv 36670 . 2 (𝜑 → ((𝑀𝑄) ∈ 𝐴 ↔ {(0g𝑈)} ( ⋖L𝑈)(𝑀𝑄)))
4137, 40mpbird 260 1 (𝜑 → (𝑀𝑄) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {csn 4516   class class class wbr 5030  ccnv 5524  ran crn 5526  cfv 6339  0gc0g 16816  LModclmod 19753  LSubSpclss 19822  LSAtomsclsa 36611  L clcv 36655  HLchlt 36987  LHypclh 37621  DVecHcdvh 38715  LCDualclcd 39223  mapdcmpd 39261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-riotaBAD 36590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-undef 7968  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-0g 16818  df-mre 16960  df-mrc 16961  df-acs 16963  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-cntz 18565  df-oppg 18592  df-lsm 18879  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-lmod 19755  df-lss 19823  df-lsp 19863  df-lvec 19994  df-lsatoms 36613  df-lshyp 36614  df-lcv 36656  df-lfl 36695  df-lkr 36723  df-ldual 36761  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136  df-lvols 37137  df-lines 37138  df-psubsp 37140  df-pmap 37141  df-padd 37433  df-lhyp 37625  df-laut 37626  df-ldil 37741  df-ltrn 37742  df-trl 37796  df-tgrp 38380  df-tendo 38392  df-edring 38394  df-dveca 38640  df-disoa 38666  df-dvech 38716  df-dib 38776  df-dic 38810  df-dih 38866  df-doch 38985  df-djh 39032  df-lcdual 39224  df-mapd 39262
This theorem is referenced by:  hdmaprnlem3eN  39495  hdmaprnlem16N  39499
  Copyright terms: Public domain W3C validator