| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdcnvatN | Structured version Visualization version GIF version | ||
| Description: Atoms are preserved by the map defined by df-mapd 41619. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdat.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdat.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| mapdat.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdat.b | ⊢ 𝐵 = (LSAtoms‘𝐶) |
| mapdat.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdcnvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapdcnvatN | ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdat.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 3 | mapdat.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 5 | mapdat.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | 1, 3, 5 | dvhlmod 41104 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 8 | 7, 4 | lsssn0 20854 | . . . . . 6 ⊢ (𝑈 ∈ LMod → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 10 | 1, 2, 3, 4, 5, 9 | mapdcnvid1N 41648 | . . . 4 ⊢ (𝜑 → (◡𝑀‘(𝑀‘{(0g‘𝑈)})) = {(0g‘𝑈)}) |
| 11 | mapdat.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 13 | 1, 2, 3, 7, 11, 12, 5 | mapd0 41659 | . . . . 5 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
| 14 | 13 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → (◡𝑀‘(𝑀‘{(0g‘𝑈)})) = (◡𝑀‘{(0g‘𝐶)})) |
| 15 | 10, 14 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → {(0g‘𝑈)} = (◡𝑀‘{(0g‘𝐶)})) |
| 16 | mapdat.b | . . . . . 6 ⊢ 𝐵 = (LSAtoms‘𝐶) | |
| 17 | eqid 2729 | . . . . . 6 ⊢ ( ⋖L ‘𝐶) = ( ⋖L ‘𝐶) | |
| 18 | 1, 11, 5 | lcdlvec 41585 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 19 | mapdcnvat.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 20 | 12, 16, 17, 18, 19 | lsatcv0 39024 | . . . . 5 ⊢ (𝜑 → {(0g‘𝐶)} ( ⋖L ‘𝐶)𝑄) |
| 21 | 1, 11, 5 | lcdlmod 41586 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 22 | eqid 2729 | . . . . . . . . 9 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 23 | 12, 22 | lsssn0 20854 | . . . . . . . 8 ⊢ (𝐶 ∈ LMod → {(0g‘𝐶)} ∈ (LSubSp‘𝐶)) |
| 24 | 21, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → {(0g‘𝐶)} ∈ (LSubSp‘𝐶)) |
| 25 | 1, 2, 11, 22, 5 | mapdrn2 41645 | . . . . . . 7 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
| 26 | 24, 25 | eleqtrrd 2831 | . . . . . 6 ⊢ (𝜑 → {(0g‘𝐶)} ∈ ran 𝑀) |
| 27 | 1, 2, 5, 26 | mapdcnvid2 41651 | . . . . 5 ⊢ (𝜑 → (𝑀‘(◡𝑀‘{(0g‘𝐶)})) = {(0g‘𝐶)}) |
| 28 | 22, 16, 21, 19 | lsatlssel 38990 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝐶)) |
| 29 | 28, 25 | eleqtrrd 2831 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ran 𝑀) |
| 30 | 1, 2, 5, 29 | mapdcnvid2 41651 | . . . . 5 ⊢ (𝜑 → (𝑀‘(◡𝑀‘𝑄)) = 𝑄) |
| 31 | 20, 27, 30 | 3brtr4d 5139 | . . . 4 ⊢ (𝜑 → (𝑀‘(◡𝑀‘{(0g‘𝐶)}))( ⋖L ‘𝐶)(𝑀‘(◡𝑀‘𝑄))) |
| 32 | eqid 2729 | . . . . 5 ⊢ ( ⋖L ‘𝑈) = ( ⋖L ‘𝑈) | |
| 33 | 1, 2, 3, 4, 5, 26 | mapdcnvcl 41646 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘{(0g‘𝐶)}) ∈ (LSubSp‘𝑈)) |
| 34 | 1, 2, 3, 4, 5, 29 | mapdcnvcl 41646 | . . . . 5 ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ (LSubSp‘𝑈)) |
| 35 | 1, 2, 3, 4, 32, 11, 17, 5, 33, 34 | mapdcv 41654 | . . . 4 ⊢ (𝜑 → ((◡𝑀‘{(0g‘𝐶)})( ⋖L ‘𝑈)(◡𝑀‘𝑄) ↔ (𝑀‘(◡𝑀‘{(0g‘𝐶)}))( ⋖L ‘𝐶)(𝑀‘(◡𝑀‘𝑄)))) |
| 36 | 31, 35 | mpbird 257 | . . 3 ⊢ (𝜑 → (◡𝑀‘{(0g‘𝐶)})( ⋖L ‘𝑈)(◡𝑀‘𝑄)) |
| 37 | 15, 36 | eqbrtrd 5129 | . 2 ⊢ (𝜑 → {(0g‘𝑈)} ( ⋖L ‘𝑈)(◡𝑀‘𝑄)) |
| 38 | mapdat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 39 | 1, 3, 5 | dvhlvec 41103 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 40 | 7, 4, 38, 32, 39, 34 | lsat0cv 39026 | . 2 ⊢ (𝜑 → ((◡𝑀‘𝑄) ∈ 𝐴 ↔ {(0g‘𝑈)} ( ⋖L ‘𝑈)(◡𝑀‘𝑄))) |
| 41 | 37, 40 | mpbird 257 | 1 ⊢ (𝜑 → (◡𝑀‘𝑄) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 class class class wbr 5107 ◡ccnv 5637 ran crn 5639 ‘cfv 6511 0gc0g 17402 LModclmod 20766 LSubSpclss 20837 LSAtomsclsa 38967 ⋖L clcv 39011 HLchlt 39343 LHypclh 39978 DVecHcdvh 41072 LCDualclcd 41580 mapdcmpd 41618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-mre 17547 df-mrc 17548 df-acs 17550 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-nzr 20422 df-rlreg 20603 df-domn 20604 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lsatoms 38969 df-lshyp 38970 df-lcv 39012 df-lfl 39051 df-lkr 39079 df-ldual 39117 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tgrp 40737 df-tendo 40749 df-edring 40751 df-dveca 40997 df-disoa 41023 df-dvech 41073 df-dib 41133 df-dic 41167 df-dih 41223 df-doch 41342 df-djh 41389 df-lcdual 41581 df-mapd 41619 |
| This theorem is referenced by: hdmaprnlem3eN 41852 hdmaprnlem16N 41856 |
| Copyright terms: Public domain | W3C validator |