| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdat | Structured version Visualization version GIF version | ||
| Description: Atoms are preserved by the map defined by df-mapd 41568. Property (g) in [Baer] p. 41. (Contributed by NM, 14-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdat.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdat.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| mapdat.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdat.b | ⊢ 𝐵 = (LSAtoms‘𝐶) |
| mapdat.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| mapdat | ⊢ (𝜑 → (𝑀‘𝑄) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdat.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 3 | mapdat.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | eqid 2734 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 5 | mapdat.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 6 | eqid 2734 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 7 | mapdat.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mapd0 41608 | . . 3 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
| 9 | mapdat.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 10 | eqid 2734 | . . . . 5 ⊢ ( ⋖L ‘𝑈) = ( ⋖L ‘𝑈) | |
| 11 | 1, 3, 7 | dvhlvec 41052 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 12 | mapdat.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 13 | 4, 9, 10, 11, 12 | lsatcv0 38973 | . . . 4 ⊢ (𝜑 → {(0g‘𝑈)} ( ⋖L ‘𝑈)𝑄) |
| 14 | eqid 2734 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 15 | eqid 2734 | . . . . 5 ⊢ ( ⋖L ‘𝐶) = ( ⋖L ‘𝐶) | |
| 16 | 1, 3, 7 | dvhlmod 41053 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 17 | 4, 14 | lsssn0 20919 | . . . . . 6 ⊢ (𝑈 ∈ LMod → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ∈ (LSubSp‘𝑈)) |
| 19 | 14, 9, 16, 12 | lsatlssel 38939 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝑈)) |
| 20 | 1, 2, 3, 14, 10, 5, 15, 7, 18, 19 | mapdcv 41603 | . . . 4 ⊢ (𝜑 → ({(0g‘𝑈)} ( ⋖L ‘𝑈)𝑄 ↔ (𝑀‘{(0g‘𝑈)})( ⋖L ‘𝐶)(𝑀‘𝑄))) |
| 21 | 13, 20 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)})( ⋖L ‘𝐶)(𝑀‘𝑄)) |
| 22 | 8, 21 | eqbrtrrd 5149 | . 2 ⊢ (𝜑 → {(0g‘𝐶)} ( ⋖L ‘𝐶)(𝑀‘𝑄)) |
| 23 | eqid 2734 | . . 3 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 24 | mapdat.b | . . 3 ⊢ 𝐵 = (LSAtoms‘𝐶) | |
| 25 | 1, 5, 7 | lcdlvec 41534 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 26 | 1, 2, 3, 14, 5, 23, 7, 19 | mapdcl2 41599 | . . 3 ⊢ (𝜑 → (𝑀‘𝑄) ∈ (LSubSp‘𝐶)) |
| 27 | 6, 23, 24, 15, 25, 26 | lsat0cv 38975 | . 2 ⊢ (𝜑 → ((𝑀‘𝑄) ∈ 𝐵 ↔ {(0g‘𝐶)} ( ⋖L ‘𝐶)(𝑀‘𝑄))) |
| 28 | 22, 27 | mpbird 257 | 1 ⊢ (𝜑 → (𝑀‘𝑄) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4608 class class class wbr 5125 ‘cfv 6542 0gc0g 17460 LModclmod 20831 LSubSpclss 20902 LSAtomsclsa 38916 ⋖L clcv 38960 HLchlt 39292 LHypclh 39927 DVecHcdvh 41021 LCDualclcd 41529 mapdcmpd 41567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38895 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-undef 8281 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-0g 17462 df-mre 17605 df-mrc 17606 df-acs 17608 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cntz 19309 df-oppg 19338 df-lsm 19627 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-dvr 20374 df-nzr 20486 df-rlreg 20667 df-domn 20668 df-drng 20704 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lvec 21075 df-lsatoms 38918 df-lshyp 38919 df-lcv 38961 df-lfl 39000 df-lkr 39028 df-ldual 39066 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-llines 39441 df-lplanes 39442 df-lvols 39443 df-lines 39444 df-psubsp 39446 df-pmap 39447 df-padd 39739 df-lhyp 39931 df-laut 39932 df-ldil 40047 df-ltrn 40048 df-trl 40102 df-tgrp 40686 df-tendo 40698 df-edring 40700 df-dveca 40946 df-disoa 40972 df-dvech 41022 df-dib 41082 df-dic 41116 df-dih 41172 df-doch 41291 df-djh 41338 df-lcdual 41530 df-mapd 41568 |
| This theorem is referenced by: mapdspex 41611 mapdpglem5N 41620 mapdpglem20 41634 mapdpglem30a 41638 mapdpglem30b 41639 |
| Copyright terms: Public domain | W3C validator |