Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdat Structured version   Visualization version   GIF version

Theorem mapdat 39324
Description: Atoms are preserved by the map defined by df-mapd 39282. Property (g) in [Baer] p. 41. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
mapdat.h 𝐻 = (LHyp‘𝐾)
mapdat.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdat.a 𝐴 = (LSAtoms‘𝑈)
mapdat.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdat.b 𝐵 = (LSAtoms‘𝐶)
mapdat.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdat.q (𝜑𝑄𝐴)
Assertion
Ref Expression
mapdat (𝜑 → (𝑀𝑄) ∈ 𝐵)

Proof of Theorem mapdat
StepHypRef Expression
1 mapdat.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdat.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdat.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2738 . . . 4 (0g𝑈) = (0g𝑈)
5 mapdat.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 eqid 2738 . . . 4 (0g𝐶) = (0g𝐶)
7 mapdat.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
81, 2, 3, 4, 5, 6, 7mapd0 39322 . . 3 (𝜑 → (𝑀‘{(0g𝑈)}) = {(0g𝐶)})
9 mapdat.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
10 eqid 2738 . . . . 5 ( ⋖L𝑈) = ( ⋖L𝑈)
111, 3, 7dvhlvec 38766 . . . . 5 (𝜑𝑈 ∈ LVec)
12 mapdat.q . . . . 5 (𝜑𝑄𝐴)
134, 9, 10, 11, 12lsatcv0 36688 . . . 4 (𝜑 → {(0g𝑈)} ( ⋖L𝑈)𝑄)
14 eqid 2738 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
15 eqid 2738 . . . . 5 ( ⋖L𝐶) = ( ⋖L𝐶)
161, 3, 7dvhlmod 38767 . . . . . 6 (𝜑𝑈 ∈ LMod)
174, 14lsssn0 19838 . . . . . 6 (𝑈 ∈ LMod → {(0g𝑈)} ∈ (LSubSp‘𝑈))
1816, 17syl 17 . . . . 5 (𝜑 → {(0g𝑈)} ∈ (LSubSp‘𝑈))
1914, 9, 16, 12lsatlssel 36654 . . . . 5 (𝜑𝑄 ∈ (LSubSp‘𝑈))
201, 2, 3, 14, 10, 5, 15, 7, 18, 19mapdcv 39317 . . . 4 (𝜑 → ({(0g𝑈)} ( ⋖L𝑈)𝑄 ↔ (𝑀‘{(0g𝑈)})( ⋖L𝐶)(𝑀𝑄)))
2113, 20mpbid 235 . . 3 (𝜑 → (𝑀‘{(0g𝑈)})( ⋖L𝐶)(𝑀𝑄))
228, 21eqbrtrrd 5054 . 2 (𝜑 → {(0g𝐶)} ( ⋖L𝐶)(𝑀𝑄))
23 eqid 2738 . . 3 (LSubSp‘𝐶) = (LSubSp‘𝐶)
24 mapdat.b . . 3 𝐵 = (LSAtoms‘𝐶)
251, 5, 7lcdlvec 39248 . . 3 (𝜑𝐶 ∈ LVec)
261, 2, 3, 14, 5, 23, 7, 19mapdcl2 39313 . . 3 (𝜑 → (𝑀𝑄) ∈ (LSubSp‘𝐶))
276, 23, 24, 15, 25, 26lsat0cv 36690 . 2 (𝜑 → ((𝑀𝑄) ∈ 𝐵 ↔ {(0g𝐶)} ( ⋖L𝐶)(𝑀𝑄)))
2822, 27mpbird 260 1 (𝜑 → (𝑀𝑄) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {csn 4516   class class class wbr 5030  cfv 6339  0gc0g 16816  LModclmod 19753  LSubSpclss 19822  LSAtomsclsa 36631  L clcv 36675  HLchlt 37007  LHypclh 37641  DVecHcdvh 38735  LCDualclcd 39243  mapdcmpd 39281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-riotaBAD 36610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-undef 7968  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-0g 16818  df-mre 16960  df-mrc 16961  df-acs 16963  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-cntz 18565  df-oppg 18592  df-lsm 18879  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-lmod 19755  df-lss 19823  df-lsp 19863  df-lvec 19994  df-lsatoms 36633  df-lshyp 36634  df-lcv 36676  df-lfl 36715  df-lkr 36743  df-ldual 36781  df-oposet 36833  df-ol 36835  df-oml 36836  df-covers 36923  df-ats 36924  df-atl 36955  df-cvlat 36979  df-hlat 37008  df-llines 37155  df-lplanes 37156  df-lvols 37157  df-lines 37158  df-psubsp 37160  df-pmap 37161  df-padd 37453  df-lhyp 37645  df-laut 37646  df-ldil 37761  df-ltrn 37762  df-trl 37816  df-tgrp 38400  df-tendo 38412  df-edring 38414  df-dveca 38660  df-disoa 38686  df-dvech 38736  df-dib 38796  df-dic 38830  df-dih 38886  df-doch 39005  df-djh 39052  df-lcdual 39244  df-mapd 39282
This theorem is referenced by:  mapdspex  39325  mapdpglem5N  39334  mapdpglem20  39348  mapdpglem30a  39352  mapdpglem30b  39353
  Copyright terms: Public domain W3C validator