Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringbasefd | Structured version Visualization version GIF version |
Description: Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
Ref | Expression |
---|---|
mnringbasefd.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringbasefd.2 | ⊢ 𝐵 = (Base‘𝐹) |
mnringbasefd.3 | ⊢ 𝐴 = (Base‘𝑀) |
mnringbasefd.4 | ⊢ 𝐶 = (Base‘𝑅) |
mnringbasefd.5 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringbasefd.6 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
mnringbasefd.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
mnringbasefd | ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringbasefd.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | mnringbasefd.1 | . . . . 5 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
3 | mnringbasefd.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
4 | mnringbasefd.3 | . . . . 5 ⊢ 𝐴 = (Base‘𝑀) | |
5 | mnringbasefd.4 | . . . . 5 ⊢ 𝐶 = (Base‘𝑅) | |
6 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | mnringbasefd.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
8 | mnringbasefd.6 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mnringelbased 42205 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp (0g‘𝑅)))) |
10 | 1, 9 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp (0g‘𝑅))) |
11 | 10 | simpld 496 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐶 ↑m 𝐴)) |
12 | elmapi 8712 | . 2 ⊢ (𝑋 ∈ (𝐶 ↑m 𝐴) → 𝑋:𝐴⟶𝐶) | |
13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 class class class wbr 5096 ⟶wf 6479 ‘cfv 6483 (class class class)co 7341 ↑m cmap 8690 finSupp cfsupp 9230 Basecbs 17009 0gc0g 17247 MndRing cmnring 42197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-map 8692 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-sup 9303 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-fz 13345 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-hom 17083 df-cco 17084 df-0g 17249 df-prds 17255 df-pws 17257 df-sra 20539 df-rgmod 20540 df-dsmm 21044 df-frlm 21059 df-mnring 42198 |
This theorem is referenced by: mnringmulrcld 42219 |
Copyright terms: Public domain | W3C validator |