Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringbasefd | Structured version Visualization version GIF version |
Description: Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
Ref | Expression |
---|---|
mnringbasefd.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringbasefd.2 | ⊢ 𝐵 = (Base‘𝐹) |
mnringbasefd.3 | ⊢ 𝐴 = (Base‘𝑀) |
mnringbasefd.4 | ⊢ 𝐶 = (Base‘𝑅) |
mnringbasefd.5 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringbasefd.6 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
mnringbasefd.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
mnringbasefd | ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringbasefd.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | mnringbasefd.1 | . . . . 5 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
3 | mnringbasefd.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
4 | mnringbasefd.3 | . . . . 5 ⊢ 𝐴 = (Base‘𝑀) | |
5 | mnringbasefd.4 | . . . . 5 ⊢ 𝐶 = (Base‘𝑅) | |
6 | eqid 2739 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | mnringbasefd.5 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
8 | mnringbasefd.6 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mnringelbased 41839 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp (0g‘𝑅)))) |
10 | 1, 9 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp (0g‘𝑅))) |
11 | 10 | simpld 495 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐶 ↑m 𝐴)) |
12 | elmapi 8646 | . 2 ⊢ (𝑋 ∈ (𝐶 ↑m 𝐴) → 𝑋:𝐴⟶𝐶) | |
13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 ⟶wf 6433 ‘cfv 6437 (class class class)co 7284 ↑m cmap 8624 finSupp cfsupp 9137 Basecbs 16921 0gc0g 17159 MndRing cmnring 41831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-ixp 8695 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-sup 9210 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-fz 13249 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-sca 16987 df-vsca 16988 df-ip 16989 df-tset 16990 df-ple 16991 df-ds 16993 df-hom 16995 df-cco 16996 df-0g 17161 df-prds 17167 df-pws 17169 df-sra 20443 df-rgmod 20444 df-dsmm 20948 df-frlm 20963 df-mnring 41832 |
This theorem is referenced by: mnringmulrcld 41853 |
Copyright terms: Public domain | W3C validator |