Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcprmpw | Structured version Visualization version GIF version |
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
pcprmpw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 16369 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | 1 | adantr 481 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℤ) |
3 | zexpcl 13786 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∈ ℤ) | |
4 | 2, 3 | sylan 580 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∈ ℤ) |
5 | iddvds 15968 | . . . . . 6 ⊢ ((𝑃↑𝑛) ∈ ℤ → (𝑃↑𝑛) ∥ (𝑃↑𝑛)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∥ (𝑃↑𝑛)) |
7 | breq1 5078 | . . . . 5 ⊢ (𝐴 = (𝑃↑𝑛) → (𝐴 ∥ (𝑃↑𝑛) ↔ (𝑃↑𝑛) ∥ (𝑃↑𝑛))) | |
8 | 6, 7 | syl5ibrcom 246 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃↑𝑛) → 𝐴 ∥ (𝑃↑𝑛))) |
9 | 8 | reximdva 3202 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛))) |
10 | pcprmpw2 16572 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | |
11 | 9, 10 | sylibd 238 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
12 | pccl 16539 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0) | |
13 | oveq2 7277 | . . . . 5 ⊢ (𝑛 = (𝑃 pCnt 𝐴) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt 𝐴))) | |
14 | 13 | rspceeqv 3576 | . . . 4 ⊢ (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
15 | 14 | ex 413 | . . 3 ⊢ ((𝑃 pCnt 𝐴) ∈ ℕ0 → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
16 | 12, 15 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
17 | 11, 16 | impbid 211 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5075 (class class class)co 7269 ℕcn 11962 ℕ0cn0 12222 ℤcz 12308 ↑cexp 13771 ∥ cdvds 15952 ℙcprime 16365 pCnt cpc 16526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 ax-pre-sup 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-2o 8287 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-sup 9190 df-inf 9191 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-div 11622 df-nn 11963 df-2 12025 df-3 12026 df-n0 12223 df-z 12309 df-uz 12572 df-q 12678 df-rp 12720 df-fz 13229 df-fl 13501 df-mod 13579 df-seq 13711 df-exp 13772 df-cj 14799 df-re 14800 df-im 14801 df-sqrt 14935 df-abs 14936 df-dvds 15953 df-gcd 16191 df-prm 16366 df-pc 16527 |
This theorem is referenced by: pgpfi1 19189 pgpfi 19199 pgpfi2 19200 fislw 19219 |
Copyright terms: Public domain | W3C validator |