![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcprmpw | Structured version Visualization version GIF version |
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
pcprmpw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 15873 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | 1 | adantr 473 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℤ) |
3 | zexpcl 13257 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∈ ℤ) | |
4 | 2, 3 | sylan 572 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∈ ℤ) |
5 | iddvds 15481 | . . . . . 6 ⊢ ((𝑃↑𝑛) ∈ ℤ → (𝑃↑𝑛) ∥ (𝑃↑𝑛)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∥ (𝑃↑𝑛)) |
7 | breq1 4928 | . . . . 5 ⊢ (𝐴 = (𝑃↑𝑛) → (𝐴 ∥ (𝑃↑𝑛) ↔ (𝑃↑𝑛) ∥ (𝑃↑𝑛))) | |
8 | 6, 7 | syl5ibrcom 239 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃↑𝑛) → 𝐴 ∥ (𝑃↑𝑛))) |
9 | 8 | reximdva 3213 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛))) |
10 | pcprmpw2 16072 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | |
11 | 9, 10 | sylibd 231 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
12 | pccl 16040 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0) | |
13 | oveq2 6982 | . . . . 5 ⊢ (𝑛 = (𝑃 pCnt 𝐴) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt 𝐴))) | |
14 | 13 | rspceeqv 3547 | . . . 4 ⊢ (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
15 | 14 | ex 405 | . . 3 ⊢ ((𝑃 pCnt 𝐴) ∈ ℕ0 → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
16 | 12, 15 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
17 | 11, 16 | impbid 204 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3083 class class class wbr 4925 (class class class)co 6974 ℕcn 11437 ℕ0cn0 11705 ℤcz 11791 ↑cexp 13242 ∥ cdvds 15465 ℙcprime 15869 pCnt cpc 16027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-q 12161 df-rp 12203 df-fz 12707 df-fl 12975 df-mod 13051 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-dvds 15466 df-gcd 15702 df-prm 15870 df-pc 16028 |
This theorem is referenced by: pgpfi1 18493 pgpfi 18503 pgpfi2 18504 fislw 18523 |
Copyright terms: Public domain | W3C validator |