![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcprmpw | Structured version Visualization version GIF version |
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
pcprmpw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 16617 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℤ) |
3 | zexpcl 14047 | . . . . . . 7 ⊢ ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∈ ℤ) | |
4 | 2, 3 | sylan 579 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∈ ℤ) |
5 | iddvds 16218 | . . . . . 6 ⊢ ((𝑃↑𝑛) ∈ ℤ → (𝑃↑𝑛) ∥ (𝑃↑𝑛)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝑃↑𝑛) ∥ (𝑃↑𝑛)) |
7 | breq1 5151 | . . . . 5 ⊢ (𝐴 = (𝑃↑𝑛) → (𝐴 ∥ (𝑃↑𝑛) ↔ (𝑃↑𝑛) ∥ (𝑃↑𝑛))) | |
8 | 6, 7 | syl5ibrcom 246 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃↑𝑛) → 𝐴 ∥ (𝑃↑𝑛))) |
9 | 8 | reximdva 3167 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛))) |
10 | pcprmpw2 16820 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) | |
11 | 9, 10 | sylibd 238 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
12 | pccl 16787 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0) | |
13 | oveq2 7420 | . . . . 5 ⊢ (𝑛 = (𝑃 pCnt 𝐴) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt 𝐴))) | |
14 | 13 | rspceeqv 3633 | . . . 4 ⊢ (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
15 | 14 | ex 412 | . . 3 ⊢ ((𝑃 pCnt 𝐴) ∈ ℕ0 → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
16 | 12, 15 | syl 17 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
17 | 11, 16 | impbid 211 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5148 (class class class)co 7412 ℕcn 12217 ℕ0cn0 12477 ℤcz 12563 ↑cexp 14032 ∥ cdvds 16202 ℙcprime 16613 pCnt cpc 16774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-fz 13490 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 df-gcd 16441 df-prm 16614 df-pc 16775 |
This theorem is referenced by: pgpfi1 19505 pgpfi 19515 pgpfi2 19516 fislw 19535 |
Copyright terms: Public domain | W3C validator |