MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivlem2 Structured version   Visualization version   GIF version

Theorem plydivlem2 26337
Description: Lemma for plydivalg 26342. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
plydivlem2 ((𝜑𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivlem2
StepHypRef Expression
1 plydiv.r . 2 𝑅 = (𝐹f − (𝐺f · 𝑞))
2 plydiv.f . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
32adantr 480 . . 3 ((𝜑𝑞 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
4 plydiv.g . . . . 5 (𝜑𝐺 ∈ (Poly‘𝑆))
54adantr 480 . . . 4 ((𝜑𝑞 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
6 simpr 484 . . . 4 ((𝜑𝑞 ∈ (Poly‘𝑆)) → 𝑞 ∈ (Poly‘𝑆))
7 plydiv.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
87adantlr 715 . . . 4 (((𝜑𝑞 ∈ (Poly‘𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9 plydiv.tm . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
109adantlr 715 . . . 4 (((𝜑𝑞 ∈ (Poly‘𝑆)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
115, 6, 8, 10plymul 26258 . . 3 ((𝜑𝑞 ∈ (Poly‘𝑆)) → (𝐺f · 𝑞) ∈ (Poly‘𝑆))
12 plydiv.m1 . . . 4 (𝜑 → -1 ∈ 𝑆)
1312adantr 480 . . 3 ((𝜑𝑞 ∈ (Poly‘𝑆)) → -1 ∈ 𝑆)
143, 11, 8, 10, 13plysub 26259 . 2 ((𝜑𝑞 ∈ (Poly‘𝑆)) → (𝐹f − (𝐺f · 𝑞)) ∈ (Poly‘𝑆))
151, 14eqeltrid 2844 1 ((𝜑𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  cfv 6560  (class class class)co 7432  f cof 7696  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cmin 11493  -cneg 11494   / cdiv 11921  0𝑝c0p 25705  Polycply 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-ply 26228
This theorem is referenced by:  plydiveu  26341
  Copyright terms: Public domain W3C validator