![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0splitsn | Structured version Visualization version GIF version |
Description: Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
sge0splitsn.ph | ⊢ Ⅎ𝑘𝜑 |
sge0splitsn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0splitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sge0splitsn.n | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
sge0splitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0splitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
sge0splitsn.e | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
sge0splitsn | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0splitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | sge0splitsn.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | snfi 9058 | . . . . 5 ⊢ {𝐵} ∈ Fin | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝐵} ∈ Fin) |
5 | 4 | elexd 3490 | . . 3 ⊢ (𝜑 → {𝐵} ∈ V) |
6 | sge0splitsn.n | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
7 | disjsn 4711 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
9 | sge0splitsn.c | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
10 | elsni 4641 | . . . . 5 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
11 | sge0splitsn.d | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷) |
13 | 10, 12 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐶 = 𝐷) |
14 | sge0splitsn.e | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐷 ∈ (0[,]+∞)) |
16 | 13, 15 | eqeltrd 2828 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐶 ∈ (0[,]+∞)) |
17 | 1, 2, 5, 8, 9, 16 | sge0splitmpt 45712 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)))) |
18 | sge0splitsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
19 | 1, 18, 14, 11 | sge0snmptf 45738 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶)) = 𝐷) |
20 | 19 | oveq2d 7430 | . 2 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ {𝐵} ↦ 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 𝐷)) |
21 | 17, 20 | eqtrd 2767 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Vcvv 3469 ∪ cun 3942 ∩ cin 3943 ∅c0 4318 {csn 4624 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 Fincfn 8953 0cc0 11124 +∞cpnf 11261 +𝑒 cxad 13108 [,]cicc 13345 Σ^csumge0 45663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-xadd 13111 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-sum 15651 df-sumge0 45664 |
This theorem is referenced by: hoidmv1lelem2 45893 |
Copyright terms: Public domain | W3C validator |