Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1 Structured version   Visualization version   GIF version

Theorem smfpimbor1 43371
 Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1.s (𝜑𝑆 ∈ SAlg)
smfpimbor1.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1.a 𝐷 = dom 𝐹
smfpimbor1.j 𝐽 = (topGen‘ran (,))
smfpimbor1.b 𝐵 = (SalGen‘𝐽)
smfpimbor1.e (𝜑𝐸𝐵)
smfpimbor1.p 𝑃 = (𝐹𝐸)
Assertion
Ref Expression
smfpimbor1 (𝜑𝑃 ∈ (𝑆t 𝐷))

Proof of Theorem smfpimbor1
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 smfpimbor1.s . 2 (𝜑𝑆 ∈ SAlg)
2 smfpimbor1.f . 2 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpimbor1.a . 2 𝐷 = dom 𝐹
4 smfpimbor1.j . 2 𝐽 = (topGen‘ran (,))
5 smfpimbor1.b . 2 𝐵 = (SalGen‘𝐽)
6 smfpimbor1.e . 2 (𝜑𝐸𝐵)
7 smfpimbor1.p . 2 𝑃 = (𝐹𝐸)
8 eqid 2822 . 2 {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
91, 2, 3, 4, 5, 6, 7, 8smfpimbor1lem2 43370 1 (𝜑𝑃 ∈ (𝑆t 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2114  {crab 3134  𝒫 cpw 4511  ◡ccnv 5531  dom cdm 5532  ran crn 5533   “ cima 5535  ‘cfv 6334  (class class class)co 7140  ℝcr 10525  (,)cioo 12726   ↾t crest 16685  topGenctg 16702  SAlgcsalg 42889  SalGencsalgen 42893  SMblFncsmblfn 43273 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fl 13157  df-rest 16687  df-topgen 16708  df-top 21497  df-bases 21549  df-salg 42890  df-salgen 42894  df-smblfn 43274 This theorem is referenced by:  smfco  43373  smfpimcc  43378
 Copyright terms: Public domain W3C validator