| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimbor1 | Structured version Visualization version GIF version | ||
| Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfpimbor1.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimbor1.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimbor1.a | ⊢ 𝐷 = dom 𝐹 |
| smfpimbor1.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| smfpimbor1.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| smfpimbor1.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| smfpimbor1.p | ⊢ 𝑃 = (◡𝐹 “ 𝐸) |
| Ref | Expression |
|---|---|
| smfpimbor1 | ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfpimbor1.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | smfpimbor1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 3 | smfpimbor1.a | . 2 ⊢ 𝐷 = dom 𝐹 | |
| 4 | smfpimbor1.j | . 2 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 5 | smfpimbor1.b | . 2 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 6 | smfpimbor1.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
| 7 | smfpimbor1.p | . 2 ⊢ 𝑃 = (◡𝐹 “ 𝐸) | |
| 8 | eqid 2734 | . 2 ⊢ {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} = {𝑒 ∈ 𝒫 ℝ ∣ (◡𝐹 “ 𝑒) ∈ (𝑆 ↾t 𝐷)} | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | smfpimbor1lem2 46747 | 1 ⊢ (𝜑 → 𝑃 ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 𝒫 cpw 4580 ◡ccnv 5664 dom cdm 5665 ran crn 5666 “ cima 5668 ‘cfv 6540 (class class class)co 7412 ℝcr 11135 (,)cioo 13368 ↾t crest 17435 topGenctg 17452 SAlgcsalg 46256 SalGencsalgen 46260 SMblFncsmblfn 46643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cc 10456 ax-ac2 10484 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8726 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-acn 9963 df-ac 10137 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-n0 12509 df-z 12596 df-uz 12860 df-q 12972 df-rp 13016 df-ioo 13372 df-ico 13374 df-fl 13813 df-rest 17437 df-topgen 17458 df-top 22847 df-bases 22899 df-salg 46257 df-salgen 46261 df-smblfn 46644 |
| This theorem is referenced by: smfco 46750 smfpimcc 46756 |
| Copyright terms: Public domain | W3C validator |