Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1 Structured version   Visualization version   GIF version

Theorem smfpimbor1 41753
Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1.s (𝜑𝑆 ∈ SAlg)
smfpimbor1.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1.a 𝐷 = dom 𝐹
smfpimbor1.j 𝐽 = (topGen‘ran (,))
smfpimbor1.b 𝐵 = (SalGen‘𝐽)
smfpimbor1.e (𝜑𝐸𝐵)
smfpimbor1.p 𝑃 = (𝐹𝐸)
Assertion
Ref Expression
smfpimbor1 (𝜑𝑃 ∈ (𝑆t 𝐷))

Proof of Theorem smfpimbor1
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 smfpimbor1.s . 2 (𝜑𝑆 ∈ SAlg)
2 smfpimbor1.f . 2 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpimbor1.a . 2 𝐷 = dom 𝐹
4 smfpimbor1.j . 2 𝐽 = (topGen‘ran (,))
5 smfpimbor1.b . 2 𝐵 = (SalGen‘𝐽)
6 smfpimbor1.e . 2 (𝜑𝐸𝐵)
7 smfpimbor1.p . 2 𝑃 = (𝐹𝐸)
8 eqid 2799 . 2 {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
91, 2, 3, 4, 5, 6, 7, 8smfpimbor1lem2 41752 1 (𝜑𝑃 ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  {crab 3093  𝒫 cpw 4349  ccnv 5311  dom cdm 5312  ran crn 5313  cima 5315  cfv 6101  (class class class)co 6878  cr 10223  (,)cioo 12424  t crest 16396  topGenctg 16413  SAlgcsalg 41271  SalGencsalgen 41275  SMblFncsmblfn 41655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cc 9545  ax-ac2 9573  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-omul 7804  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-acn 9054  df-ac 9225  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-ioo 12428  df-ico 12430  df-fl 12848  df-rest 16398  df-topgen 16419  df-top 21027  df-bases 21079  df-salg 41272  df-salgen 41276  df-smblfn 41656
This theorem is referenced by:  smfco  41755  smfpimcc  41760
  Copyright terms: Public domain W3C validator