| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > geoserg | Structured version Visualization version GIF version | ||
| Description: The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| geoserg.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| geoserg.2 | ⊢ (𝜑 → 𝐴 ≠ 1) |
| geoserg.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| geoserg.4 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| Ref | Expression |
|---|---|
| geoserg | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzofi 14015 | . . . . . 6 ⊢ (𝑀..^𝑁) ∈ Fin | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
| 3 | ax-1cn 11213 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 4 | geoserg.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 5 | subcl 11507 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ) | |
| 6 | 3, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (1 − 𝐴) ∈ ℂ) |
| 7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ) |
| 8 | geoserg.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 9 | elfzouz 13703 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 10 | eluznn0 12959 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0) |
| 12 | 7, 11 | expcld 14186 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
| 13 | 2, 6, 12 | fsummulc1 15821 | . . . 4 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴))) |
| 14 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ) |
| 15 | 12, 14, 7 | subdid 11719 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴))) |
| 16 | 12 | mulridd 11278 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
| 17 | 7, 11 | expp1d 14187 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 18 | 17 | eqcomd 2743 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 𝐴) = (𝐴↑(𝑘 + 1))) |
| 19 | 16, 18 | oveq12d 7449 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
| 20 | 15, 19 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
| 21 | 20 | sumeq2dv 15738 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
| 22 | oveq2 7439 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | |
| 23 | oveq2 7439 | . . . . 5 ⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | |
| 24 | oveq2 7439 | . . . . 5 ⊢ (𝑗 = 𝑀 → (𝐴↑𝑗) = (𝐴↑𝑀)) | |
| 25 | oveq2 7439 | . . . . 5 ⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | |
| 26 | geoserg.4 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 27 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| 28 | elfzuz 13560 | . . . . . . 7 ⊢ (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ≥‘𝑀)) | |
| 29 | eluznn0 12959 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ ℕ0) | |
| 30 | 8, 28, 29 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0) |
| 31 | 27, 30 | expcld 14186 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐴↑𝑗) ∈ ℂ) |
| 32 | 22, 23, 24, 25, 26, 31 | telfsumo 15838 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴↑𝑀) − (𝐴↑𝑁))) |
| 33 | 13, 21, 32 | 3eqtrrd 2782 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴))) |
| 34 | 4, 8 | expcld 14186 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑀) ∈ ℂ) |
| 35 | eluznn0 12959 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℕ0) | |
| 36 | 8, 26, 35 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 37 | 4, 36 | expcld 14186 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 38 | 34, 37 | subcld 11620 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) ∈ ℂ) |
| 39 | 2, 12 | fsumcl 15769 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ∈ ℂ) |
| 40 | geoserg.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 1) | |
| 41 | 40 | necomd 2996 | . . . . 5 ⊢ (𝜑 → 1 ≠ 𝐴) |
| 42 | subeq0 11535 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
| 43 | 3, 4, 42 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
| 44 | 43 | necon3bid 2985 | . . . . 5 ⊢ (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴)) |
| 45 | 41, 44 | mpbird 257 | . . . 4 ⊢ (𝜑 → (1 − 𝐴) ≠ 0) |
| 46 | 38, 39, 6, 45 | divmul3d 12077 | . . 3 ⊢ (𝜑 → ((((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ↔ ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)))) |
| 47 | 33, 46 | mpbird 257 | . 2 ⊢ (𝜑 → (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘)) |
| 48 | 47 | eqcomd 2743 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 ℂcc 11153 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 − cmin 11492 / cdiv 11920 ℕ0cn0 12526 ℤ≥cuz 12878 ...cfz 13547 ..^cfzo 13694 ↑cexp 14102 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 |
| This theorem is referenced by: geoser 15903 rplogsumlem2 27529 rpvmasumlem 27531 dchrisum0flblem1 27552 |
| Copyright terms: Public domain | W3C validator |