Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > geoserg | Structured version Visualization version GIF version |
Description: The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
geoserg.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
geoserg.2 | ⊢ (𝜑 → 𝐴 ≠ 1) |
geoserg.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
geoserg.4 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
Ref | Expression |
---|---|
geoserg | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofi 13622 | . . . . . 6 ⊢ (𝑀..^𝑁) ∈ Fin | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
3 | ax-1cn 10860 | . . . . . 6 ⊢ 1 ∈ ℂ | |
4 | geoserg.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
5 | subcl 11150 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (1 − 𝐴) ∈ ℂ) |
7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ) |
8 | geoserg.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
9 | elfzouz 13320 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
10 | eluznn0 12586 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) | |
11 | 8, 9, 10 | syl2an 595 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0) |
12 | 7, 11 | expcld 13792 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
13 | 2, 6, 12 | fsummulc1 15425 | . . . 4 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴))) |
14 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ) |
15 | 12, 14, 7 | subdid 11361 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴))) |
16 | 12 | mulid1d 10923 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
17 | 7, 11 | expp1d 13793 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
18 | 17 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 𝐴) = (𝐴↑(𝑘 + 1))) |
19 | 16, 18 | oveq12d 7273 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
20 | 15, 19 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
21 | 20 | sumeq2dv 15343 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
22 | oveq2 7263 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | |
23 | oveq2 7263 | . . . . 5 ⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | |
24 | oveq2 7263 | . . . . 5 ⊢ (𝑗 = 𝑀 → (𝐴↑𝑗) = (𝐴↑𝑀)) | |
25 | oveq2 7263 | . . . . 5 ⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | |
26 | geoserg.4 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
27 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
28 | elfzuz 13181 | . . . . . . 7 ⊢ (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ≥‘𝑀)) | |
29 | eluznn0 12586 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ ℕ0) | |
30 | 8, 28, 29 | syl2an 595 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0) |
31 | 27, 30 | expcld 13792 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐴↑𝑗) ∈ ℂ) |
32 | 22, 23, 24, 25, 26, 31 | telfsumo 15442 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴↑𝑀) − (𝐴↑𝑁))) |
33 | 13, 21, 32 | 3eqtrrd 2783 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴))) |
34 | 4, 8 | expcld 13792 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑀) ∈ ℂ) |
35 | eluznn0 12586 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℕ0) | |
36 | 8, 26, 35 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
37 | 4, 36 | expcld 13792 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
38 | 34, 37 | subcld 11262 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) ∈ ℂ) |
39 | 2, 12 | fsumcl 15373 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ∈ ℂ) |
40 | geoserg.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 1) | |
41 | 40 | necomd 2998 | . . . . 5 ⊢ (𝜑 → 1 ≠ 𝐴) |
42 | subeq0 11177 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
43 | 3, 4, 42 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
44 | 43 | necon3bid 2987 | . . . . 5 ⊢ (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴)) |
45 | 41, 44 | mpbird 256 | . . . 4 ⊢ (𝜑 → (1 − 𝐴) ≠ 0) |
46 | 38, 39, 6, 45 | divmul3d 11715 | . . 3 ⊢ (𝜑 → ((((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ↔ ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)))) |
47 | 33, 46 | mpbird 256 | . 2 ⊢ (𝜑 → (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘)) |
48 | 47 | eqcomd 2744 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 ↑cexp 13710 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: geoser 15507 rplogsumlem2 26538 rpvmasumlem 26540 dchrisum0flblem1 26561 |
Copyright terms: Public domain | W3C validator |