MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoserg Structured version   Visualization version   GIF version

Theorem geoserg 15914
Description: The value of the finite geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
geoserg.1 (𝜑𝐴 ∈ ℂ)
geoserg.2 (𝜑𝐴 ≠ 1)
geoserg.3 (𝜑𝑀 ∈ ℕ0)
geoserg.4 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
geoserg (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem geoserg
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzofi 14025 . . . . . 6 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 ax-1cn 11242 . . . . . 6 1 ∈ ℂ
4 geoserg.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
5 subcl 11535 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
63, 4, 5sylancr 586 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
74adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ)
8 geoserg.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
9 elfzouz 13720 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
10 eluznn0 12982 . . . . . . 7 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
118, 9, 10syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0)
127, 11expcld 14196 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴𝑘) ∈ ℂ)
132, 6, 12fsummulc1 15833 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)))
143a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
1512, 14, 7subdid 11746 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)))
1612mulridd 11307 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
177, 11expp1d 14197 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
1817eqcomd 2746 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 𝐴) = (𝐴↑(𝑘 + 1)))
1916, 18oveq12d 7466 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2015, 19eqtrd 2780 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2120sumeq2dv 15750 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
22 oveq2 7456 . . . . 5 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
23 oveq2 7456 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
24 oveq2 7456 . . . . 5 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
25 oveq2 7456 . . . . 5 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
26 geoserg.4 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
274adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
28 elfzuz 13580 . . . . . . 7 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ𝑀))
29 eluznn0 12982 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
308, 28, 29syl2an 595 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0)
3127, 30expcld 14196 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐴𝑗) ∈ ℂ)
3222, 23, 24, 25, 26, 31telfsumo 15850 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) − (𝐴𝑁)))
3313, 21, 323eqtrrd 2785 . . 3 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)))
344, 8expcld 14196 . . . . 5 (𝜑 → (𝐴𝑀) ∈ ℂ)
35 eluznn0 12982 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ0)
368, 26, 35syl2anc 583 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
374, 36expcld 14196 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
3834, 37subcld 11647 . . . 4 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) ∈ ℂ)
392, 12fsumcl 15781 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ∈ ℂ)
40 geoserg.2 . . . . . 6 (𝜑𝐴 ≠ 1)
4140necomd 3002 . . . . 5 (𝜑 → 1 ≠ 𝐴)
42 subeq0 11562 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
433, 4, 42sylancr 586 . . . . . 6 (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4443necon3bid 2991 . . . . 5 (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
4541, 44mpbird 257 . . . 4 (𝜑 → (1 − 𝐴) ≠ 0)
4638, 39, 6, 45divmul3d 12104 . . 3 (𝜑 → ((((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ↔ ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴))))
4733, 46mpbird 257 . 2 (𝜑 → (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘))
4847eqcomd 2746 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947  0cn0 12553  cuz 12903  ...cfz 13567  ..^cfzo 13711  cexp 14112  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  geoser  15915  rplogsumlem2  27547  rpvmasumlem  27549  dchrisum0flblem1  27570
  Copyright terms: Public domain W3C validator