MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoserg Structured version   Visualization version   GIF version

Theorem geoserg 15758
Description: The value of the finite geometric series ๐ดโ†‘๐‘€ + ๐ดโ†‘(๐‘€ + 1) +... + ๐ดโ†‘(๐‘ โˆ’ 1). (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
geoserg.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
geoserg.2 (๐œ‘ โ†’ ๐ด โ‰  1)
geoserg.3 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•0)
geoserg.4 (๐œ‘ โ†’ ๐‘ โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
Assertion
Ref Expression
geoserg (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜) = (((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)) / (1 โˆ’ ๐ด)))
Distinct variable groups:   ๐ด,๐‘˜   ๐‘˜,๐‘€   ๐‘˜,๐‘   ๐œ‘,๐‘˜

Proof of Theorem geoserg
Dummy variable ๐‘— is distinct from all other variables.
StepHypRef Expression
1 fzofi 13886 . . . . . 6 (๐‘€..^๐‘) โˆˆ Fin
21a1i 11 . . . . 5 (๐œ‘ โ†’ (๐‘€..^๐‘) โˆˆ Fin)
3 ax-1cn 11116 . . . . . 6 1 โˆˆ โ„‚
4 geoserg.1 . . . . . 6 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
5 subcl 11407 . . . . . 6 ((1 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (1 โˆ’ ๐ด) โˆˆ โ„‚)
63, 4, 5sylancr 588 . . . . 5 (๐œ‘ โ†’ (1 โˆ’ ๐ด) โˆˆ โ„‚)
74adantr 482 . . . . . 6 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ ๐ด โˆˆ โ„‚)
8 geoserg.3 . . . . . . 7 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•0)
9 elfzouz 13583 . . . . . . 7 (๐‘˜ โˆˆ (๐‘€..^๐‘) โ†’ ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
10 eluznn0 12849 . . . . . . 7 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘˜ โˆˆ (โ„คโ‰ฅโ€˜๐‘€)) โ†’ ๐‘˜ โˆˆ โ„•0)
118, 9, 10syl2an 597 . . . . . 6 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ ๐‘˜ โˆˆ โ„•0)
127, 11expcld 14058 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ (๐ดโ†‘๐‘˜) โˆˆ โ„‚)
132, 6, 12fsummulc1 15677 . . . 4 (๐œ‘ โ†’ (ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜) ยท (1 โˆ’ ๐ด)) = ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)((๐ดโ†‘๐‘˜) ยท (1 โˆ’ ๐ด)))
143a1i 11 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ 1 โˆˆ โ„‚)
1512, 14, 7subdid 11618 . . . . . 6 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ ((๐ดโ†‘๐‘˜) ยท (1 โˆ’ ๐ด)) = (((๐ดโ†‘๐‘˜) ยท 1) โˆ’ ((๐ดโ†‘๐‘˜) ยท ๐ด)))
1612mulid1d 11179 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ ((๐ดโ†‘๐‘˜) ยท 1) = (๐ดโ†‘๐‘˜))
177, 11expp1d 14059 . . . . . . . 8 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ (๐ดโ†‘(๐‘˜ + 1)) = ((๐ดโ†‘๐‘˜) ยท ๐ด))
1817eqcomd 2743 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ ((๐ดโ†‘๐‘˜) ยท ๐ด) = (๐ดโ†‘(๐‘˜ + 1)))
1916, 18oveq12d 7380 . . . . . 6 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ (((๐ดโ†‘๐‘˜) ยท 1) โˆ’ ((๐ดโ†‘๐‘˜) ยท ๐ด)) = ((๐ดโ†‘๐‘˜) โˆ’ (๐ดโ†‘(๐‘˜ + 1))))
2015, 19eqtrd 2777 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ (๐‘€..^๐‘)) โ†’ ((๐ดโ†‘๐‘˜) ยท (1 โˆ’ ๐ด)) = ((๐ดโ†‘๐‘˜) โˆ’ (๐ดโ†‘(๐‘˜ + 1))))
2120sumeq2dv 15595 . . . 4 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)((๐ดโ†‘๐‘˜) ยท (1 โˆ’ ๐ด)) = ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)((๐ดโ†‘๐‘˜) โˆ’ (๐ดโ†‘(๐‘˜ + 1))))
22 oveq2 7370 . . . . 5 (๐‘— = ๐‘˜ โ†’ (๐ดโ†‘๐‘—) = (๐ดโ†‘๐‘˜))
23 oveq2 7370 . . . . 5 (๐‘— = (๐‘˜ + 1) โ†’ (๐ดโ†‘๐‘—) = (๐ดโ†‘(๐‘˜ + 1)))
24 oveq2 7370 . . . . 5 (๐‘— = ๐‘€ โ†’ (๐ดโ†‘๐‘—) = (๐ดโ†‘๐‘€))
25 oveq2 7370 . . . . 5 (๐‘— = ๐‘ โ†’ (๐ดโ†‘๐‘—) = (๐ดโ†‘๐‘))
26 geoserg.4 . . . . 5 (๐œ‘ โ†’ ๐‘ โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
274adantr 482 . . . . . 6 ((๐œ‘ โˆง ๐‘— โˆˆ (๐‘€...๐‘)) โ†’ ๐ด โˆˆ โ„‚)
28 elfzuz 13444 . . . . . . 7 (๐‘— โˆˆ (๐‘€...๐‘) โ†’ ๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘€))
29 eluznn0 12849 . . . . . . 7 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘— โˆˆ (โ„คโ‰ฅโ€˜๐‘€)) โ†’ ๐‘— โˆˆ โ„•0)
308, 28, 29syl2an 597 . . . . . 6 ((๐œ‘ โˆง ๐‘— โˆˆ (๐‘€...๐‘)) โ†’ ๐‘— โˆˆ โ„•0)
3127, 30expcld 14058 . . . . 5 ((๐œ‘ โˆง ๐‘— โˆˆ (๐‘€...๐‘)) โ†’ (๐ดโ†‘๐‘—) โˆˆ โ„‚)
3222, 23, 24, 25, 26, 31telfsumo 15694 . . . 4 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)((๐ดโ†‘๐‘˜) โˆ’ (๐ดโ†‘(๐‘˜ + 1))) = ((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)))
3313, 21, 323eqtrrd 2782 . . 3 (๐œ‘ โ†’ ((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)) = (ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜) ยท (1 โˆ’ ๐ด)))
344, 8expcld 14058 . . . . 5 (๐œ‘ โ†’ (๐ดโ†‘๐‘€) โˆˆ โ„‚)
35 eluznn0 12849 . . . . . . 7 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ (โ„คโ‰ฅโ€˜๐‘€)) โ†’ ๐‘ โˆˆ โ„•0)
368, 26, 35syl2anc 585 . . . . . 6 (๐œ‘ โ†’ ๐‘ โˆˆ โ„•0)
374, 36expcld 14058 . . . . 5 (๐œ‘ โ†’ (๐ดโ†‘๐‘) โˆˆ โ„‚)
3834, 37subcld 11519 . . . 4 (๐œ‘ โ†’ ((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)) โˆˆ โ„‚)
392, 12fsumcl 15625 . . . 4 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜) โˆˆ โ„‚)
40 geoserg.2 . . . . . 6 (๐œ‘ โ†’ ๐ด โ‰  1)
4140necomd 3000 . . . . 5 (๐œ‘ โ†’ 1 โ‰  ๐ด)
42 subeq0 11434 . . . . . . 7 ((1 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ ((1 โˆ’ ๐ด) = 0 โ†” 1 = ๐ด))
433, 4, 42sylancr 588 . . . . . 6 (๐œ‘ โ†’ ((1 โˆ’ ๐ด) = 0 โ†” 1 = ๐ด))
4443necon3bid 2989 . . . . 5 (๐œ‘ โ†’ ((1 โˆ’ ๐ด) โ‰  0 โ†” 1 โ‰  ๐ด))
4541, 44mpbird 257 . . . 4 (๐œ‘ โ†’ (1 โˆ’ ๐ด) โ‰  0)
4638, 39, 6, 45divmul3d 11972 . . 3 (๐œ‘ โ†’ ((((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)) / (1 โˆ’ ๐ด)) = ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜) โ†” ((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)) = (ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜) ยท (1 โˆ’ ๐ด))))
4733, 46mpbird 257 . 2 (๐œ‘ โ†’ (((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)) / (1 โˆ’ ๐ด)) = ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜))
4847eqcomd 2743 1 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (๐‘€..^๐‘)(๐ดโ†‘๐‘˜) = (((๐ดโ†‘๐‘€) โˆ’ (๐ดโ†‘๐‘)) / (1 โˆ’ ๐ด)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2944  โ€˜cfv 6501  (class class class)co 7362  Fincfn 8890  โ„‚cc 11056  0cc0 11058  1c1 11059   + caddc 11061   ยท cmul 11063   โˆ’ cmin 11392   / cdiv 11819  โ„•0cn0 12420  โ„คโ‰ฅcuz 12770  ...cfz 13431  ..^cfzo 13574  โ†‘cexp 13974  ฮฃcsu 15577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578
This theorem is referenced by:  geoser  15759  rplogsumlem2  26849  rpvmasumlem  26851  dchrisum0flblem1  26872
  Copyright terms: Public domain W3C validator