MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsum2 Structured version   Visualization version   GIF version

Theorem telfsum2 15150
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsum.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsum.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsum.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsum.4 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
telfsum.5 (𝜑𝑁 ∈ ℤ)
telfsum.6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
telfsum.7 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsum2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = (𝐸𝐷))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsum2
StepHypRef Expression
1 telfsum.5 . . . 4 (𝜑𝑁 ∈ ℤ)
2 fzval3 13096 . . . 4 (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1)))
31, 2syl 17 . . 3 (𝜑 → (𝑀...𝑁) = (𝑀..^(𝑁 + 1)))
43sumeq1d 15048 . 2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = Σ𝑗 ∈ (𝑀..^(𝑁 + 1))(𝐶𝐵))
5 telfsum.1 . . 3 (𝑘 = 𝑗𝐴 = 𝐵)
6 telfsum.2 . . 3 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
7 telfsum.3 . . 3 (𝑘 = 𝑀𝐴 = 𝐷)
8 telfsum.4 . . 3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
9 telfsum.6 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
10 telfsum.7 . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
115, 6, 7, 8, 9, 10telfsumo2 15148 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^(𝑁 + 1))(𝐶𝐵) = (𝐸𝐷))
124, 11eqtrd 2856 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = (𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cfv 6349  (class class class)co 7145  cc 10524  1c1 10527   + caddc 10529  cmin 10859  cz 11970  cuz 12232  ...cfz 12882  ..^cfzo 13023  Σcsu 15032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-sum 15033
This theorem is referenced by:  fsumkthpow  15400  emcllem5  25505  dirkertrigeqlem2  42265  etransclem46  42446
  Copyright terms: Public domain W3C validator