MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsum2 Structured version   Visualization version   GIF version

Theorem telfsum2 15758
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsum.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsum.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsum.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsum.4 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
telfsum.5 (𝜑𝑁 ∈ ℤ)
telfsum.6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
telfsum.7 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsum2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = (𝐸𝐷))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsum2
StepHypRef Expression
1 telfsum.5 . . . 4 (𝜑𝑁 ∈ ℤ)
2 fzval3 13708 . . . 4 (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1)))
31, 2syl 17 . . 3 (𝜑 → (𝑀...𝑁) = (𝑀..^(𝑁 + 1)))
43sumeq1d 15654 . 2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = Σ𝑗 ∈ (𝑀..^(𝑁 + 1))(𝐶𝐵))
5 telfsum.1 . . 3 (𝑘 = 𝑗𝐴 = 𝐵)
6 telfsum.2 . . 3 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
7 telfsum.3 . . 3 (𝑘 = 𝑀𝐴 = 𝐷)
8 telfsum.4 . . 3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
9 telfsum.6 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
10 telfsum.7 . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
115, 6, 7, 8, 9, 10telfsumo2 15756 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^(𝑁 + 1))(𝐶𝐵) = (𝐸𝐷))
124, 11eqtrd 2771 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = (𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  cc 11114  1c1 11117   + caddc 11119  cmin 11451  cz 12565  cuz 12829  ...cfz 13491  ..^cfzo 13634  Σcsu 15639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-sum 15640
This theorem is referenced by:  fsumkthpow  16007  emcllem5  26847  sticksstones10  41441  sticksstones12a  41443  dirkertrigeqlem2  45277  etransclem46  45458
  Copyright terms: Public domain W3C validator