MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo2 Structured version   Visualization version   GIF version

Theorem telfsumo2 15138
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo2
StepHypRef Expression
1 telfsumo.1 . . . 4 (𝑘 = 𝑗𝐴 = 𝐵)
21negeqd 10858 . . 3 (𝑘 = 𝑗 → -𝐴 = -𝐵)
3 telfsumo.2 . . . 4 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
43negeqd 10858 . . 3 (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶)
5 telfsumo.3 . . . 4 (𝑘 = 𝑀𝐴 = 𝐷)
65negeqd 10858 . . 3 (𝑘 = 𝑀 → -𝐴 = -𝐷)
7 telfsumo.4 . . . 4 (𝑘 = 𝑁𝐴 = 𝐸)
87negeqd 10858 . . 3 (𝑘 = 𝑁 → -𝐴 = -𝐸)
9 telfsumo.5 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
10 telfsumo.6 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1110negcld 10962 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ)
122, 4, 6, 8, 9, 11telfsumo 15137 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸))
1310ralrimiva 3169 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
14 elfzofz 13037 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
151eleq1d 2895 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
1615rspccva 3601 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
1713, 14, 16syl2an 597 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
18 fzofzp1 13118 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
193eleq1d 2895 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
2019rspccva 3601 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ)
2113, 18, 20syl2an 597 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
2217, 21neg2subd 10992 . . 3 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶𝐵))
2322sumeq2dv 15040 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵))
245eleq1d 2895 . . . 4 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
25 eluzfz1 12898 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
269, 25syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
2724, 13, 26rspcdva 3604 . . 3 (𝜑𝐷 ∈ ℂ)
287eleq1d 2895 . . . 4 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
29 eluzfz2 12899 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
309, 29syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
3128, 13, 30rspcdva 3604 . . 3 (𝜑𝐸 ∈ ℂ)
3227, 31neg2subd 10992 . 2 (𝜑 → (-𝐷 − -𝐸) = (𝐸𝐷))
3312, 23, 323eqtr3d 2863 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3125  cfv 6331  (class class class)co 7133  cc 10513  1c1 10516   + caddc 10518  cmin 10848  -cneg 10849  cuz 12222  ...cfz 12876  ..^cfzo 13017  Σcsu 15022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-oi 8952  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-fz 12877  df-fzo 13018  df-seq 13354  df-exp 13415  df-hash 13676  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-clim 14825  df-sum 15023
This theorem is referenced by:  telfsum2  15140  dvfsumle  24603  dvfsumabs  24605  advlogexp  25225
  Copyright terms: Public domain W3C validator