MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo2 Structured version   Visualization version   GIF version

Theorem telfsumo2 15150
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo2
StepHypRef Expression
1 telfsumo.1 . . . 4 (𝑘 = 𝑗𝐴 = 𝐵)
21negeqd 10869 . . 3 (𝑘 = 𝑗 → -𝐴 = -𝐵)
3 telfsumo.2 . . . 4 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
43negeqd 10869 . . 3 (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶)
5 telfsumo.3 . . . 4 (𝑘 = 𝑀𝐴 = 𝐷)
65negeqd 10869 . . 3 (𝑘 = 𝑀 → -𝐴 = -𝐷)
7 telfsumo.4 . . . 4 (𝑘 = 𝑁𝐴 = 𝐸)
87negeqd 10869 . . 3 (𝑘 = 𝑁 → -𝐴 = -𝐸)
9 telfsumo.5 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
10 telfsumo.6 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1110negcld 10973 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ)
122, 4, 6, 8, 9, 11telfsumo 15149 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸))
1310ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
14 elfzofz 13048 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
151eleq1d 2874 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
1615rspccva 3570 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
1713, 14, 16syl2an 598 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
18 fzofzp1 13129 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
193eleq1d 2874 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
2019rspccva 3570 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ)
2113, 18, 20syl2an 598 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
2217, 21neg2subd 11003 . . 3 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶𝐵))
2322sumeq2dv 15052 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵))
245eleq1d 2874 . . . 4 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
25 eluzfz1 12909 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
269, 25syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
2724, 13, 26rspcdva 3573 . . 3 (𝜑𝐷 ∈ ℂ)
287eleq1d 2874 . . . 4 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
29 eluzfz2 12910 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
309, 29syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
3128, 13, 30rspcdva 3573 . . 3 (𝜑𝐸 ∈ ℂ)
3227, 31neg2subd 11003 . 2 (𝜑 → (-𝐷 − -𝐸) = (𝐸𝐷))
3312, 23, 323eqtr3d 2841 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529  cmin 10859  -cneg 10860  cuz 12231  ...cfz 12885  ..^cfzo 13028  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  telfsum2  15152  dvfsumle  24624  dvfsumabs  24626  advlogexp  25246
  Copyright terms: Public domain W3C validator