| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > telfsumo2 | Structured version Visualization version GIF version | ||
| Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| telfsumo.1 | ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) |
| telfsumo.2 | ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) |
| telfsumo.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
| telfsumo.4 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) |
| telfsumo.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| telfsumo.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| telfsumo2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsumo.1 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) | |
| 2 | 1 | negeqd 11415 | . . 3 ⊢ (𝑘 = 𝑗 → -𝐴 = -𝐵) |
| 3 | telfsumo.2 | . . . 4 ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) | |
| 4 | 3 | negeqd 11415 | . . 3 ⊢ (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶) |
| 5 | telfsumo.3 | . . . 4 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
| 6 | 5 | negeqd 11415 | . . 3 ⊢ (𝑘 = 𝑀 → -𝐴 = -𝐷) |
| 7 | telfsumo.4 | . . . 4 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) | |
| 8 | 7 | negeqd 11415 | . . 3 ⊢ (𝑘 = 𝑁 → -𝐴 = -𝐸) |
| 9 | telfsumo.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 10 | telfsumo.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 11 | 10 | negcld 11520 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ) |
| 12 | 2, 4, 6, 8, 9, 11 | telfsumo 15768 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸)) |
| 13 | 10 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 14 | elfzofz 13636 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) | |
| 15 | 1 | eleq1d 2813 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 16 | 15 | rspccva 3587 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
| 17 | 13, 14, 16 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ) |
| 18 | fzofzp1 13725 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) | |
| 19 | 3 | eleq1d 2813 | . . . . . 6 ⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 20 | 19 | rspccva 3587 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ) |
| 21 | 13, 18, 20 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ) |
| 22 | 17, 21 | neg2subd 11550 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶 − 𝐵)) |
| 23 | 22 | sumeq2dv 15668 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵)) |
| 24 | 5 | eleq1d 2813 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
| 25 | eluzfz1 13492 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
| 26 | 9, 25 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 27 | 24, 13, 26 | rspcdva 3589 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 28 | 7 | eleq1d 2813 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
| 29 | eluzfz2 13493 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 30 | 9, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 31 | 28, 13, 30 | rspcdva 3589 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 32 | 27, 31 | neg2subd 11550 | . 2 ⊢ (𝜑 → (-𝐷 − -𝐸) = (𝐸 − 𝐷)) |
| 33 | 12, 23, 32 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 − cmin 11405 -cneg 11406 ℤ≥cuz 12793 ...cfz 13468 ..^cfzo 13615 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: telfsum2 15771 dvfsumle 25926 dvfsumleOLD 25927 dvfsumabs 25929 advlogexp 26564 |
| Copyright terms: Public domain | W3C validator |