![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > telfsumo2 | Structured version Visualization version GIF version |
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
telfsumo.1 | ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) |
telfsumo.2 | ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) |
telfsumo.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
telfsumo.4 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) |
telfsumo.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
telfsumo.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
telfsumo2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | telfsumo.1 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) | |
2 | 1 | negeqd 11500 | . . 3 ⊢ (𝑘 = 𝑗 → -𝐴 = -𝐵) |
3 | telfsumo.2 | . . . 4 ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) | |
4 | 3 | negeqd 11500 | . . 3 ⊢ (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶) |
5 | telfsumo.3 | . . . 4 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
6 | 5 | negeqd 11500 | . . 3 ⊢ (𝑘 = 𝑀 → -𝐴 = -𝐷) |
7 | telfsumo.4 | . . . 4 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) | |
8 | 7 | negeqd 11500 | . . 3 ⊢ (𝑘 = 𝑁 → -𝐴 = -𝐸) |
9 | telfsumo.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
10 | telfsumo.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
11 | 10 | negcld 11605 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ) |
12 | 2, 4, 6, 8, 9, 11 | telfsumo 15835 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸)) |
13 | 10 | ralrimiva 3144 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
14 | elfzofz 13712 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) | |
15 | 1 | eleq1d 2824 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
16 | 15 | rspccva 3621 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
17 | 13, 14, 16 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ) |
18 | fzofzp1 13800 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) | |
19 | 3 | eleq1d 2824 | . . . . . 6 ⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
20 | 19 | rspccva 3621 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ) |
21 | 13, 18, 20 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ) |
22 | 17, 21 | neg2subd 11635 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶 − 𝐵)) |
23 | 22 | sumeq2dv 15735 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵)) |
24 | 5 | eleq1d 2824 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
25 | eluzfz1 13568 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
26 | 9, 25 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
27 | 24, 13, 26 | rspcdva 3623 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
28 | 7 | eleq1d 2824 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
29 | eluzfz2 13569 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
30 | 9, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
31 | 28, 13, 30 | rspcdva 3623 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
32 | 27, 31 | neg2subd 11635 | . 2 ⊢ (𝜑 → (-𝐷 − -𝐸) = (𝐸 − 𝐷)) |
33 | 12, 23, 32 | 3eqtr3d 2783 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 − cmin 11490 -cneg 11491 ℤ≥cuz 12876 ...cfz 13544 ..^cfzo 13691 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 |
This theorem is referenced by: telfsum2 15838 dvfsumle 26075 dvfsumleOLD 26076 dvfsumabs 26078 advlogexp 26712 |
Copyright terms: Public domain | W3C validator |