| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > telgsumfz0s | Structured version Visualization version GIF version | ||
| Description: Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| telgsumfz0s.b | ⊢ 𝐵 = (Base‘𝐺) |
| telgsumfz0s.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| telgsumfz0s.m | ⊢ − = (-g‘𝐺) |
| telgsumfz0s.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| telgsumfz0s.f | ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| telgsumfz0s | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋0 / 𝑘⦌𝐶 − ⦋(𝑆 + 1) / 𝑘⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfz0s.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | telgsumfz0s.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 3 | telgsumfz0s.m | . 2 ⊢ − = (-g‘𝐺) | |
| 4 | telgsumfz0s.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 5 | nn0uz 12777 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 6 | 4, 5 | eleqtrdi 2838 | . 2 ⊢ (𝜑 → 𝑆 ∈ (ℤ≥‘0)) |
| 7 | telgsumfz0s.f | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵) | |
| 8 | 1, 2, 3, 6, 7 | telgsumfzs 19868 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋0 / 𝑘⦌𝐶 − ⦋(𝑆 + 1) / 𝑘⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⦋csb 3851 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 ℕ0cn0 12384 ℤ≥cuz 12735 ...cfz 13410 Basecbs 17120 Σg cgsu 17344 -gcsg 18814 Abelcabl 19660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-abl 19662 |
| This theorem is referenced by: telgsumfz0 19871 telgsums 19872 |
| Copyright terms: Public domain | W3C validator |