Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > telgsumfz0s | Structured version Visualization version GIF version |
Description: Telescoping finite group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.) (Proof shortened by AV, 25-Nov-2019.) |
Ref | Expression |
---|---|
telgsumfz0s.b | ⊢ 𝐵 = (Base‘𝐺) |
telgsumfz0s.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
telgsumfz0s.m | ⊢ − = (-g‘𝐺) |
telgsumfz0s.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
telgsumfz0s.f | ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
telgsumfz0s | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋0 / 𝑘⦌𝐶 − ⦋(𝑆 + 1) / 𝑘⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | telgsumfz0s.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | telgsumfz0s.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
3 | telgsumfz0s.m | . 2 ⊢ − = (-g‘𝐺) | |
4 | telgsumfz0s.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
5 | nn0uz 12602 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
6 | 4, 5 | eleqtrdi 2850 | . 2 ⊢ (𝜑 → 𝑆 ∈ (ℤ≥‘0)) |
7 | telgsumfz0s.f | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵) | |
8 | 1, 2, 3, 6, 7 | telgsumfzs 19571 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 − ⦋(𝑖 + 1) / 𝑘⦌𝐶))) = (⦋0 / 𝑘⦌𝐶 − ⦋(𝑆 + 1) / 𝑘⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⦋csb 3836 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 + caddc 10858 ℕ0cn0 12216 ℤ≥cuz 12564 ...cfz 13221 Basecbs 16893 Σg cgsu 17132 -gcsg 18560 Abelcabl 19368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-0g 17133 df-gsum 17134 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-cntz 18904 df-cmn 19369 df-abl 19370 |
This theorem is referenced by: telgsumfz0 19574 telgsums 19575 |
Copyright terms: Public domain | W3C validator |