Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcld Structured version   Visualization version   GIF version

Theorem knoppcld 36484
Description: Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021.)
Hypotheses
Ref Expression
knoppcld.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcld.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcld.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppcld.a (𝜑𝐴 ∈ ℝ)
knoppcld.n (𝜑𝑁 ∈ ℕ)
knoppcld.1 (𝜑𝐶 ∈ ℝ)
knoppcld.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcld (𝜑 → (𝑊𝐴) ∈ ℂ)
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppcld
StepHypRef Expression
1 knoppcld.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcld.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcld.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4 knoppcld.n . . . 4 (𝜑𝑁 ∈ ℕ)
5 knoppcld.1 . . . 4 (𝜑𝐶 ∈ ℝ)
6 knoppcld.2 . . . 4 (𝜑 → (abs‘𝐶) < 1)
71, 2, 3, 4, 5, 6knoppcn 36483 . . 3 (𝜑𝑊 ∈ (ℝ–cn→ℂ))
8 cncff 24909 . . 3 (𝑊 ∈ (ℝ–cn→ℂ) → 𝑊:ℝ⟶ℂ)
97, 8syl 17 . 2 (𝜑𝑊:ℝ⟶ℂ)
10 knoppcld.a . 2 (𝜑𝐴 ∈ ℝ)
119, 10ffvelcdmd 7103 1 (𝜑 → (𝑊𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5141  cmpt 5223  wf 6555  cfv 6559  (class class class)co 7429  cc 11149  cr 11150  1c1 11152   + caddc 11154   · cmul 11156   < clt 11291  cmin 11488   / cdiv 11916  cn 12262  2c2 12317  0cn0 12522  cfl 13826  cexp 14098  abscabs 15269  Σcsu 15718  cnccncf 24892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-inf2 9677  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229  ax-addf 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-isom 6568  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-of 7694  df-om 7884  df-1st 8010  df-2nd 8011  df-supp 8182  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-er 8741  df-map 8864  df-pm 8865  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-fsupp 9398  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-q 12987  df-rp 13031  df-xneg 13150  df-xadd 13151  df-xmul 13152  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ress 17271  df-plusg 17306  df-mulr 17307  df-starv 17308  df-sca 17309  df-vsca 17310  df-ip 17311  df-tset 17312  df-ple 17313  df-ds 17315  df-unif 17316  df-hom 17317  df-cco 17318  df-rest 17463  df-topn 17464  df-0g 17482  df-gsum 17483  df-topgen 17484  df-pt 17485  df-prds 17488  df-xrs 17543  df-qtop 17548  df-imas 17549  df-xps 17551  df-mre 17625  df-mrc 17626  df-acs 17628  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-submnd 18793  df-mulg 19082  df-cntz 19331  df-cmn 19796  df-psmet 21348  df-xmet 21349  df-met 21350  df-bl 21351  df-mopn 21352  df-cnfld 21357  df-top 22890  df-topon 22907  df-topsp 22929  df-bases 22943  df-cn 23225  df-cnp 23226  df-tx 23560  df-hmeo 23753  df-xms 24320  df-ms 24321  df-tms 24322  df-cncf 24894  df-ulm 26410
This theorem is referenced by:  knoppndvlem17  36507  knoppndvlem21  36511
  Copyright terms: Public domain W3C validator