![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sinltxirr | GIF version |
Description: The sine of a positive irrational number is less than its argument. Here irrational means apart from any rational number. (Contributed by Mario Carneiro, 29-Jul-2014.) |
Ref | Expression |
---|---|
sinltxirr | ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9716 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → 𝐴 ∈ ℝ) |
3 | 2 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 ∈ ℝ) |
4 | rpgt0 9721 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
5 | 4 | ad2antrr 488 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 0 < 𝐴) |
6 | 1red 8024 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 1 ∈ ℝ) | |
7 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 < 1) | |
8 | 3, 6, 7 | ltled 8128 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 ≤ 1) |
9 | 0xr 8056 | . . . . 5 ⊢ 0 ∈ ℝ* | |
10 | 1re 8008 | . . . . 5 ⊢ 1 ∈ ℝ | |
11 | elioc2 9992 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) | |
12 | 9, 10, 11 | mp2an 426 | . . . 4 ⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1)) |
13 | 3, 5, 8, 12 | syl3anbrc 1183 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 ∈ (0(,]1)) |
14 | sin01bnd 11890 | . . . 4 ⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | |
15 | 14 | simprd 114 | . . 3 ⊢ (𝐴 ∈ (0(,]1) → (sin‘𝐴) < 𝐴) |
16 | 13, 15 | syl 14 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → (sin‘𝐴) < 𝐴) |
17 | 2 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) |
18 | 17 | resincld 11856 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → (sin‘𝐴) ∈ ℝ) |
19 | 1red 8024 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
20 | sinbnd 11885 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | |
21 | 20 | simprd 114 | . . . 4 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ≤ 1) |
22 | 17, 21 | syl 14 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → (sin‘𝐴) ≤ 1) |
23 | simpr 110 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → 1 < 𝐴) | |
24 | 18, 19, 17, 22, 23 | lelttrd 8134 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → (sin‘𝐴) < 𝐴) |
25 | breq2 4033 | . . . 4 ⊢ (𝑞 = 1 → (𝐴 # 𝑞 ↔ 𝐴 # 1)) | |
26 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) | |
27 | 1z 9333 | . . . . 5 ⊢ 1 ∈ ℤ | |
28 | zq 9681 | . . . . 5 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
29 | 27, 28 | mp1i 10 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → 1 ∈ ℚ) |
30 | 25, 26, 29 | rspcdva 2869 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → 𝐴 # 1) |
31 | reaplt 8597 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 # 1 ↔ (𝐴 < 1 ∨ 1 < 𝐴))) | |
32 | 2, 10, 31 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (𝐴 # 1 ↔ (𝐴 < 1 ∨ 1 < 𝐴))) |
33 | 30, 32 | mpbid 147 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (𝐴 < 1 ∨ 1 < 𝐴)) |
34 | 16, 24, 33 | mpjaodan 799 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2164 ∀wral 2472 class class class wbr 4029 ‘cfv 5246 (class class class)co 5910 ℝcr 7861 0cc0 7862 1c1 7863 ℝ*cxr 8043 < clt 8044 ≤ cle 8045 − cmin 8180 -cneg 8181 # cap 8590 / cdiv 8681 3c3 9024 ℤcz 9307 ℚcq 9674 ℝ+crp 9709 (,]cioc 9945 ↑cexp 10599 sincsin 11777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-iinf 4616 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-mulrcl 7961 ax-addcom 7962 ax-mulcom 7963 ax-addass 7964 ax-mulass 7965 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-1rid 7969 ax-0id 7970 ax-rnegex 7971 ax-precex 7972 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-pre-apti 7977 ax-pre-ltadd 7978 ax-pre-mulgt0 7979 ax-pre-mulext 7980 ax-arch 7981 ax-caucvg 7982 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4322 df-po 4325 df-iso 4326 df-iord 4395 df-on 4397 df-ilim 4398 df-suc 4400 df-iom 4619 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-f1 5251 df-fo 5252 df-f1o 5253 df-fv 5254 df-isom 5255 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-1st 6184 df-2nd 6185 df-recs 6349 df-irdg 6414 df-frec 6435 df-1o 6460 df-oadd 6464 df-er 6578 df-en 6786 df-dom 6787 df-fin 6788 df-sup 7033 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-sub 8182 df-neg 8183 df-reap 8584 df-ap 8591 df-div 8682 df-inn 8973 df-2 9031 df-3 9032 df-4 9033 df-5 9034 df-6 9035 df-7 9036 df-8 9037 df-n0 9231 df-z 9308 df-uz 9583 df-q 9675 df-rp 9710 df-ioc 9949 df-ico 9950 df-fz 10065 df-fzo 10199 df-seqfrec 10509 df-exp 10600 df-fac 10787 df-bc 10809 df-ihash 10837 df-shft 10949 df-cj 10976 df-re 10977 df-im 10978 df-rsqrt 11132 df-abs 11133 df-clim 11412 df-sumdc 11487 df-ef 11781 df-sin 11783 df-cos 11784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |