| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sinltxirr | GIF version | ||
| Description: The sine of a positive irrational number is less than its argument. Here irrational means apart from any rational number. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| Ref | Expression |
|---|---|
| sinltxirr | ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9824 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → 𝐴 ∈ ℝ) |
| 3 | 2 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 ∈ ℝ) |
| 4 | rpgt0 9829 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 5 | 4 | ad2antrr 488 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 0 < 𝐴) |
| 6 | 1red 8129 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 1 ∈ ℝ) | |
| 7 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 < 1) | |
| 8 | 3, 6, 7 | ltled 8233 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 ≤ 1) |
| 9 | 0xr 8161 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 10 | 1re 8113 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 11 | elioc2 10100 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) | |
| 12 | 9, 10, 11 | mp2an 426 | . . . 4 ⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1)) |
| 13 | 3, 5, 8, 12 | syl3anbrc 1186 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → 𝐴 ∈ (0(,]1)) |
| 14 | sin01bnd 12234 | . . . 4 ⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | |
| 15 | 14 | simprd 114 | . . 3 ⊢ (𝐴 ∈ (0(,]1) → (sin‘𝐴) < 𝐴) |
| 16 | 13, 15 | syl 14 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 𝐴 < 1) → (sin‘𝐴) < 𝐴) |
| 17 | 2 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) |
| 18 | 17 | resincld 12200 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → (sin‘𝐴) ∈ ℝ) |
| 19 | 1red 8129 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
| 20 | sinbnd 12229 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | |
| 21 | 20 | simprd 114 | . . . 4 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ≤ 1) |
| 22 | 17, 21 | syl 14 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → (sin‘𝐴) ≤ 1) |
| 23 | simpr 110 | . . 3 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → 1 < 𝐴) | |
| 24 | 18, 19, 17, 22, 23 | lelttrd 8239 | . 2 ⊢ (((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) ∧ 1 < 𝐴) → (sin‘𝐴) < 𝐴) |
| 25 | breq2 4066 | . . . 4 ⊢ (𝑞 = 1 → (𝐴 # 𝑞 ↔ 𝐴 # 1)) | |
| 26 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) | |
| 27 | 1z 9440 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 28 | zq 9789 | . . . . 5 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
| 29 | 27, 28 | mp1i 10 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → 1 ∈ ℚ) |
| 30 | 25, 26, 29 | rspcdva 2892 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → 𝐴 # 1) |
| 31 | reaplt 8703 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 # 1 ↔ (𝐴 < 1 ∨ 1 < 𝐴))) | |
| 32 | 2, 10, 31 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (𝐴 # 1 ↔ (𝐴 < 1 ∨ 1 < 𝐴))) |
| 33 | 30, 32 | mpbid 147 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (𝐴 < 1 ∨ 1 < 𝐴)) |
| 34 | 16, 24, 33 | mpjaodan 802 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 ∧ w3a 983 ∈ wcel 2180 ∀wral 2488 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 0cc0 7967 1c1 7968 ℝ*cxr 8148 < clt 8149 ≤ cle 8150 − cmin 8285 -cneg 8286 # cap 8696 / cdiv 8787 3c3 9130 ℤcz 9414 ℚcq 9782 ℝ+crp 9817 (,]cioc 10053 ↑cexp 10727 sincsin 12121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-disj 4039 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-ioc 10057 df-ico 10058 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-fac 10915 df-bc 10937 df-ihash 10965 df-shft 11292 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ef 12125 df-sin 12127 df-cos 12128 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |