| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem3 | Structured version Visualization version GIF version | ||
| Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem3.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
| lcmineqlem3.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lcmineqlem3.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| lcmineqlem3.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| lcmineqlem3 | ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmineqlem3.1 | . . 3 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
| 2 | lcmineqlem3.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | lcmineqlem3.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 4 | lcmineqlem3.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 5 | 1, 2, 3, 4 | lcmineqlem2 41990 | . 2 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| 6 | elunitcn 13490 | . . . . . . . 8 ⊢ (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ) | |
| 7 | 6 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ) |
| 8 | elfznn0 13642 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
| 9 | 8 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑘 ∈ ℕ0) |
| 10 | nnm1nn0 12550 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
| 11 | 3, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 − 1) ∈ ℕ0) |
| 12 | 11 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑀 − 1) ∈ ℕ0) |
| 13 | 7, 9, 12 | expaddd 14170 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘))) |
| 14 | 13 | 3expa 1118 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘))) |
| 15 | 14 | itgeq2dv 25753 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥) |
| 16 | 15 | oveq2d 7429 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| 17 | 16 | sumeq2dv 15720 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| 18 | 0red 11246 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 0 ∈ ℝ) | |
| 19 | 1red 11244 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 1 ∈ ℝ) | |
| 20 | 0le1 11768 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 0 ≤ 1) |
| 22 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 − 1) ∈ ℕ0) |
| 23 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℕ0) |
| 24 | 22, 23 | nn0addcld 12574 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑀 − 1) + 𝑘) ∈ ℕ0) |
| 25 | 18, 19, 21, 24 | itgpowd 26027 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1))) |
| 26 | 3 | nncnd 12264 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 27 | 26 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℂ) |
| 28 | 1cnd 11238 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 1 ∈ ℂ) | |
| 29 | nn0cn 12519 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
| 30 | 8, 29 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℂ) |
| 31 | 30 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℂ) |
| 32 | 27, 28, 31 | nppcand 11627 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((𝑀 − 1) + 𝑘) + 1) = (𝑀 + 𝑘)) |
| 33 | 32 | oveq2d 7429 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1↑(((𝑀 − 1) + 𝑘) + 1)) = (1↑(𝑀 + 𝑘))) |
| 34 | 32 | oveq2d 7429 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (0↑(((𝑀 − 1) + 𝑘) + 1)) = (0↑(𝑀 + 𝑘))) |
| 35 | 33, 34 | oveq12d 7431 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘)))) |
| 36 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℕ) |
| 37 | nnnn0addcl 12539 | . . . . . . . . . . . 12 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ) | |
| 38 | 36, 23, 37 | syl2anc 584 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
| 39 | 38 | nnzd 12623 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℤ) |
| 40 | 1exp 14114 | . . . . . . . . . 10 ⊢ ((𝑀 + 𝑘) ∈ ℤ → (1↑(𝑀 + 𝑘)) = 1) | |
| 41 | 39, 40 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1↑(𝑀 + 𝑘)) = 1) |
| 42 | 0exp 14120 | . . . . . . . . . 10 ⊢ ((𝑀 + 𝑘) ∈ ℕ → (0↑(𝑀 + 𝑘)) = 0) | |
| 43 | 38, 42 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (0↑(𝑀 + 𝑘)) = 0) |
| 44 | 41, 43 | oveq12d 7431 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))) = (1 − 0)) |
| 45 | 35, 44 | eqtrd 2769 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = (1 − 0)) |
| 46 | 1m0e1 12369 | . . . . . . 7 ⊢ (1 − 0) = 1 | |
| 47 | 45, 46 | eqtrdi 2785 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = 1) |
| 48 | 47, 32 | oveq12d 7431 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)) = (1 / (𝑀 + 𝑘))) |
| 49 | 25, 48 | eqtrd 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (1 / (𝑀 + 𝑘))) |
| 50 | 49 | oveq2d 7429 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
| 51 | 50 | sumeq2dv 15720 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
| 52 | 5, 17, 51 | 3eqtr2d 2775 | 1 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 ≤ cle 11278 − cmin 11474 -cneg 11475 / cdiv 11902 ℕcn 12248 ℕ0cn0 12509 ℤcz 12596 [,]cicc 13372 ...cfz 13529 ↑cexp 14084 Ccbc 14323 Σcsu 15704 ∫citg 25589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cc 10457 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-symdif 4233 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-dju 9923 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14295 df-bc 14324 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-limsup 15489 df-clim 15506 df-rlim 15507 df-sum 15705 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-rest 17438 df-topn 17439 df-0g 17457 df-gsum 17458 df-topgen 17459 df-pt 17460 df-prds 17463 df-xrs 17518 df-qtop 17523 df-imas 17524 df-xps 17526 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-mulg 19055 df-cntz 19304 df-cmn 19768 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-fbas 21323 df-fg 21324 df-cnfld 21327 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cld 22973 df-ntr 22974 df-cls 22975 df-nei 23052 df-lp 23090 df-perf 23091 df-cn 23181 df-cnp 23182 df-haus 23269 df-cmp 23341 df-tx 23516 df-hmeo 23709 df-fil 23800 df-fm 23892 df-flim 23893 df-flf 23894 df-xms 24275 df-ms 24276 df-tms 24277 df-cncf 24840 df-ovol 25435 df-vol 25436 df-mbf 25590 df-itg1 25591 df-itg2 25592 df-ibl 25593 df-itg 25594 df-0p 25641 df-limc 25837 df-dv 25838 |
| This theorem is referenced by: lcmineqlem6 41994 |
| Copyright terms: Public domain | W3C validator |