Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem3 Structured version   Visualization version   GIF version

Theorem lcmineqlem3 39183
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem3.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem3.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem3.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem3.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem3 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Distinct variable groups:   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)

Proof of Theorem lcmineqlem3
StepHypRef Expression
1 lcmineqlem3.1 . . 3 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem3.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem3.3 . . 3 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem3.4 . . 3 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem2 39182 . 2 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
6 elunitcn 12837 . . . . . . . 8 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
763ad2ant3 1131 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 elfznn0 12984 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
983ad2ant2 1130 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑘 ∈ ℕ0)
10 nnm1nn0 11917 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (𝜑 → (𝑀 − 1) ∈ ℕ0)
12113ad2ant1 1129 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑀 − 1) ∈ ℕ0)
137, 9, 12expaddd 13497 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
14133expa 1114 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁𝑀))) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
1514itgeq2dv 24364 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥)
1615oveq2d 7149 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
1716sumeq2dv 15040 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
18 0red 10622 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ∈ ℝ)
19 1red 10620 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℝ)
20 0le1 11141 . . . . . . 7 0 ≤ 1
2120a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ≤ 1)
2211adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 − 1) ∈ ℕ0)
238adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
2422, 23nn0addcld 11938 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑀 − 1) + 𝑘) ∈ ℕ0)
2518, 19, 21, 24itgpowd 24632 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)))
263nncnd 11632 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
2726adantr 483 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℂ)
28 1cnd 10614 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℂ)
29 nn0cn 11886 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
308, 29syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℂ)
3130adantl 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℂ)
3227, 28, 31nppcand 11000 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((𝑀 − 1) + 𝑘) + 1) = (𝑀 + 𝑘))
3332oveq2d 7149 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(((𝑀 − 1) + 𝑘) + 1)) = (1↑(𝑀 + 𝑘)))
3432oveq2d 7149 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(((𝑀 − 1) + 𝑘) + 1)) = (0↑(𝑀 + 𝑘)))
3533, 34oveq12d 7151 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))))
363adantr 483 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℕ)
37 nnnn0addcl 11906 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ)
3836, 23, 37syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℕ)
3938nnzd 12065 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℤ)
40 1exp 13443 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℤ → (1↑(𝑀 + 𝑘)) = 1)
4139, 40syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(𝑀 + 𝑘)) = 1)
42 0exp 13449 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℕ → (0↑(𝑀 + 𝑘)) = 0)
4338, 42syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(𝑀 + 𝑘)) = 0)
4441, 43oveq12d 7151 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))) = (1 − 0))
4535, 44eqtrd 2855 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = (1 − 0))
46 1m0e1 11737 . . . . . . 7 (1 − 0) = 1
4745, 46syl6eq 2871 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = 1)
4847, 32oveq12d 7151 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)) = (1 / (𝑀 + 𝑘)))
4925, 48eqtrd 2855 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (1 / (𝑀 + 𝑘)))
5049oveq2d 7149 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
5150sumeq2dv 15040 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
525, 17, 513eqtr2d 2861 1 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5042  (class class class)co 7133  cc 10513  0cc0 10515  1c1 10516   + caddc 10518   · cmul 10520  cle 10654  cmin 10848  -cneg 10849   / cdiv 11275  cn 11616  0cn0 11876  cz 11960  [,]cicc 12720  ...cfz 12876  cexp 13414  Ccbc 13647  Σcsu 15022  citg 24201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-cc 9835  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-symdif 4197  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-ofr 7388  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-omul 8085  df-er 8267  df-map 8386  df-pm 8387  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-fi 8853  df-sup 8884  df-inf 8885  df-oi 8952  df-dju 9308  df-card 9346  df-acn 9349  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-ioo 12721  df-ioc 12722  df-ico 12723  df-icc 12724  df-fz 12877  df-fzo 13018  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-fac 13619  df-bc 13648  df-hash 13676  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-limsup 14808  df-clim 14825  df-rlim 14826  df-sum 15023  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-pt 16697  df-prds 16700  df-xrs 16754  df-qtop 16759  df-imas 16760  df-xps 16762  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-mulg 18204  df-cntz 18426  df-cmn 18887  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-fbas 20518  df-fg 20519  df-cnfld 20522  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cld 21603  df-ntr 21604  df-cls 21605  df-nei 21682  df-lp 21720  df-perf 21721  df-cn 21811  df-cnp 21812  df-haus 21899  df-cmp 21971  df-tx 22146  df-hmeo 22339  df-fil 22430  df-fm 22522  df-flim 22523  df-flf 22524  df-xms 22906  df-ms 22907  df-tms 22908  df-cncf 23462  df-ovol 24047  df-vol 24048  df-mbf 24202  df-itg1 24203  df-itg2 24204  df-ibl 24205  df-itg 24206  df-0p 24253  df-limc 24448  df-dv 24449
This theorem is referenced by:  lcmineqlem6  39186
  Copyright terms: Public domain W3C validator