![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem3 | Structured version Visualization version GIF version |
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.) |
Ref | Expression |
---|---|
lcmineqlem3.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
lcmineqlem3.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem3.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem3.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
lcmineqlem3 | ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem3.1 | . . 3 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
2 | lcmineqlem3.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lcmineqlem3.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | lcmineqlem3.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
5 | 1, 2, 3, 4 | lcmineqlem2 41987 | . 2 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
6 | elunitcn 13528 | . . . . . . . 8 ⊢ (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ) | |
7 | 6 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ) |
8 | elfznn0 13677 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
9 | 8 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑘 ∈ ℕ0) |
10 | nnm1nn0 12594 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
11 | 3, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 − 1) ∈ ℕ0) |
12 | 11 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑀 − 1) ∈ ℕ0) |
13 | 7, 9, 12 | expaddd 14198 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘))) |
14 | 13 | 3expa 1118 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘))) |
15 | 14 | itgeq2dv 25837 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥) |
16 | 15 | oveq2d 7464 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
17 | 16 | sumeq2dv 15750 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
18 | 0red 11293 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 0 ∈ ℝ) | |
19 | 1red 11291 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 1 ∈ ℝ) | |
20 | 0le1 11813 | . . . . . . 7 ⊢ 0 ≤ 1 | |
21 | 20 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 0 ≤ 1) |
22 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 − 1) ∈ ℕ0) |
23 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℕ0) |
24 | 22, 23 | nn0addcld 12617 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑀 − 1) + 𝑘) ∈ ℕ0) |
25 | 18, 19, 21, 24 | itgpowd 26111 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1))) |
26 | 3 | nncnd 12309 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
27 | 26 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℂ) |
28 | 1cnd 11285 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 1 ∈ ℂ) | |
29 | nn0cn 12563 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
30 | 8, 29 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℂ) |
31 | 30 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℂ) |
32 | 27, 28, 31 | nppcand 11672 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((𝑀 − 1) + 𝑘) + 1) = (𝑀 + 𝑘)) |
33 | 32 | oveq2d 7464 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1↑(((𝑀 − 1) + 𝑘) + 1)) = (1↑(𝑀 + 𝑘))) |
34 | 32 | oveq2d 7464 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (0↑(((𝑀 − 1) + 𝑘) + 1)) = (0↑(𝑀 + 𝑘))) |
35 | 33, 34 | oveq12d 7466 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘)))) |
36 | 3 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℕ) |
37 | nnnn0addcl 12583 | . . . . . . . . . . . 12 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ) | |
38 | 36, 23, 37 | syl2anc 583 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
39 | 38 | nnzd 12666 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℤ) |
40 | 1exp 14142 | . . . . . . . . . 10 ⊢ ((𝑀 + 𝑘) ∈ ℤ → (1↑(𝑀 + 𝑘)) = 1) | |
41 | 39, 40 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1↑(𝑀 + 𝑘)) = 1) |
42 | 0exp 14148 | . . . . . . . . . 10 ⊢ ((𝑀 + 𝑘) ∈ ℕ → (0↑(𝑀 + 𝑘)) = 0) | |
43 | 38, 42 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (0↑(𝑀 + 𝑘)) = 0) |
44 | 41, 43 | oveq12d 7466 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))) = (1 − 0)) |
45 | 35, 44 | eqtrd 2780 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = (1 − 0)) |
46 | 1m0e1 12414 | . . . . . . 7 ⊢ (1 − 0) = 1 | |
47 | 45, 46 | eqtrdi 2796 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = 1) |
48 | 47, 32 | oveq12d 7466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)) = (1 / (𝑀 + 𝑘))) |
49 | 25, 48 | eqtrd 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (1 / (𝑀 + 𝑘))) |
50 | 49 | oveq2d 7464 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
51 | 50 | sumeq2dv 15750 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
52 | 5, 17, 51 | 3eqtr2d 2786 | 1 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ≤ cle 11325 − cmin 11520 -cneg 11521 / cdiv 11947 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 [,]cicc 13410 ...cfz 13567 ↑cexp 14112 Ccbc 14351 Σcsu 15734 ∫citg 25672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-limc 25921 df-dv 25922 |
This theorem is referenced by: lcmineqlem6 41991 |
Copyright terms: Public domain | W3C validator |