Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem3 Structured version   Visualization version   GIF version

Theorem lcmineqlem3 42026
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem3.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem3.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem3.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem3.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem3 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Distinct variable groups:   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)

Proof of Theorem lcmineqlem3
StepHypRef Expression
1 lcmineqlem3.1 . . 3 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem3.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem3.3 . . 3 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem3.4 . . 3 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem2 42025 . 2 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
6 elunitcn 13436 . . . . . . . 8 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
763ad2ant3 1135 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 elfznn0 13588 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
983ad2ant2 1134 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑘 ∈ ℕ0)
10 nnm1nn0 12490 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (𝜑 → (𝑀 − 1) ∈ ℕ0)
12113ad2ant1 1133 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑀 − 1) ∈ ℕ0)
137, 9, 12expaddd 14120 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
14133expa 1118 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁𝑀))) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
1514itgeq2dv 25690 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥)
1615oveq2d 7406 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
1716sumeq2dv 15675 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
18 0red 11184 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ∈ ℝ)
19 1red 11182 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℝ)
20 0le1 11708 . . . . . . 7 0 ≤ 1
2120a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ≤ 1)
2211adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 − 1) ∈ ℕ0)
238adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
2422, 23nn0addcld 12514 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑀 − 1) + 𝑘) ∈ ℕ0)
2518, 19, 21, 24itgpowd 25964 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)))
263nncnd 12209 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℂ)
28 1cnd 11176 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℂ)
29 nn0cn 12459 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
308, 29syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℂ)
3130adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℂ)
3227, 28, 31nppcand 11565 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((𝑀 − 1) + 𝑘) + 1) = (𝑀 + 𝑘))
3332oveq2d 7406 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(((𝑀 − 1) + 𝑘) + 1)) = (1↑(𝑀 + 𝑘)))
3432oveq2d 7406 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(((𝑀 − 1) + 𝑘) + 1)) = (0↑(𝑀 + 𝑘)))
3533, 34oveq12d 7408 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))))
363adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℕ)
37 nnnn0addcl 12479 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ)
3836, 23, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℕ)
3938nnzd 12563 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℤ)
40 1exp 14063 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℤ → (1↑(𝑀 + 𝑘)) = 1)
4139, 40syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(𝑀 + 𝑘)) = 1)
42 0exp 14069 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℕ → (0↑(𝑀 + 𝑘)) = 0)
4338, 42syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(𝑀 + 𝑘)) = 0)
4441, 43oveq12d 7408 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))) = (1 − 0))
4535, 44eqtrd 2765 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = (1 − 0))
46 1m0e1 12309 . . . . . . 7 (1 − 0) = 1
4745, 46eqtrdi 2781 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = 1)
4847, 32oveq12d 7408 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)) = (1 / (𝑀 + 𝑘)))
4925, 48eqtrd 2765 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (1 / (𝑀 + 𝑘)))
5049oveq2d 7406 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
5150sumeq2dv 15675 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
525, 17, 513eqtr2d 2771 1 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  [,]cicc 13316  ...cfz 13475  cexp 14033  Ccbc 14274  Σcsu 15659  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  lcmineqlem6  42029
  Copyright terms: Public domain W3C validator