Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem3 Structured version   Visualization version   GIF version

Theorem lcmineqlem3 40025
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem3.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem3.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem3.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem3.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem3 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Distinct variable groups:   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)

Proof of Theorem lcmineqlem3
StepHypRef Expression
1 lcmineqlem3.1 . . 3 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem3.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem3.3 . . 3 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem3.4 . . 3 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem2 40024 . 2 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
6 elunitcn 13188 . . . . . . . 8 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
763ad2ant3 1134 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 elfznn0 13337 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
983ad2ant2 1133 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑘 ∈ ℕ0)
10 nnm1nn0 12262 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (𝜑 → (𝑀 − 1) ∈ ℕ0)
12113ad2ant1 1132 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑀 − 1) ∈ ℕ0)
137, 9, 12expaddd 13854 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
14133expa 1117 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁𝑀))) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
1514itgeq2dv 24934 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥)
1615oveq2d 7284 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
1716sumeq2dv 15403 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
18 0red 10966 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ∈ ℝ)
19 1red 10964 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℝ)
20 0le1 11486 . . . . . . 7 0 ≤ 1
2120a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ≤ 1)
2211adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 − 1) ∈ ℕ0)
238adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
2422, 23nn0addcld 12285 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑀 − 1) + 𝑘) ∈ ℕ0)
2518, 19, 21, 24itgpowd 25202 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)))
263nncnd 11977 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
2726adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℂ)
28 1cnd 10958 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℂ)
29 nn0cn 12231 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
308, 29syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℂ)
3130adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℂ)
3227, 28, 31nppcand 11345 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((𝑀 − 1) + 𝑘) + 1) = (𝑀 + 𝑘))
3332oveq2d 7284 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(((𝑀 − 1) + 𝑘) + 1)) = (1↑(𝑀 + 𝑘)))
3432oveq2d 7284 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(((𝑀 − 1) + 𝑘) + 1)) = (0↑(𝑀 + 𝑘)))
3533, 34oveq12d 7286 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))))
363adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℕ)
37 nnnn0addcl 12251 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ)
3836, 23, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℕ)
3938nnzd 12413 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℤ)
40 1exp 13800 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℤ → (1↑(𝑀 + 𝑘)) = 1)
4139, 40syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(𝑀 + 𝑘)) = 1)
42 0exp 13806 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℕ → (0↑(𝑀 + 𝑘)) = 0)
4338, 42syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(𝑀 + 𝑘)) = 0)
4441, 43oveq12d 7286 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))) = (1 − 0))
4535, 44eqtrd 2778 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = (1 − 0))
46 1m0e1 12082 . . . . . . 7 (1 − 0) = 1
4745, 46eqtrdi 2794 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = 1)
4847, 32oveq12d 7286 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)) = (1 / (𝑀 + 𝑘)))
4925, 48eqtrd 2778 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (1 / (𝑀 + 𝑘)))
5049oveq2d 7284 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
5150sumeq2dv 15403 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
525, 17, 513eqtr2d 2784 1 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7268  cc 10857  0cc0 10859  1c1 10860   + caddc 10862   · cmul 10864  cle 10998  cmin 11193  -cneg 11194   / cdiv 11620  cn 11961  0cn0 12221  cz 12307  [,]cicc 13070  ...cfz 13227  cexp 13770  Ccbc 14004  Σcsu 15385  citg 24770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cc 10179  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937  ax-addf 10938  ax-mulf 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4177  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-ofr 7525  df-om 7704  df-1st 7821  df-2nd 7822  df-supp 7966  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-2o 8286  df-oadd 8289  df-omul 8290  df-er 8486  df-map 8605  df-pm 8606  df-ixp 8674  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9647  df-card 9685  df-acn 9688  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-dec 12426  df-uz 12571  df-q 12677  df-rp 12719  df-xneg 12836  df-xadd 12837  df-xmul 12838  df-ioo 13071  df-ioc 13072  df-ico 13073  df-icc 13074  df-fz 13228  df-fzo 13371  df-fl 13500  df-mod 13578  df-seq 13710  df-exp 13771  df-fac 13976  df-bc 14005  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-limsup 15168  df-clim 15185  df-rlim 15186  df-sum 15386  df-struct 16836  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-mulr 16964  df-starv 16965  df-sca 16966  df-vsca 16967  df-ip 16968  df-tset 16969  df-ple 16970  df-ds 16972  df-unif 16973  df-hom 16974  df-cco 16975  df-rest 17121  df-topn 17122  df-0g 17140  df-gsum 17141  df-topgen 17142  df-pt 17143  df-prds 17146  df-xrs 17201  df-qtop 17206  df-imas 17207  df-xps 17209  df-mre 17283  df-mrc 17284  df-acs 17286  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-submnd 18419  df-mulg 18689  df-cntz 18911  df-cmn 19376  df-psmet 20577  df-xmet 20578  df-met 20579  df-bl 20580  df-mopn 20581  df-fbas 20582  df-fg 20583  df-cnfld 20586  df-top 22031  df-topon 22048  df-topsp 22070  df-bases 22084  df-cld 22158  df-ntr 22159  df-cls 22160  df-nei 22237  df-lp 22275  df-perf 22276  df-cn 22366  df-cnp 22367  df-haus 22454  df-cmp 22526  df-tx 22701  df-hmeo 22894  df-fil 22985  df-fm 23077  df-flim 23078  df-flf 23079  df-xms 23461  df-ms 23462  df-tms 23463  df-cncf 24029  df-ovol 24616  df-vol 24617  df-mbf 24771  df-itg1 24772  df-itg2 24773  df-ibl 24774  df-itg 24775  df-0p 24822  df-limc 25018  df-dv 25019
This theorem is referenced by:  lcmineqlem6  40028
  Copyright terms: Public domain W3C validator