Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem3 Structured version   Visualization version   GIF version

Theorem lcmineqlem3 42004
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem3.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem3.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem3.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem3.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem3 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Distinct variable groups:   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)

Proof of Theorem lcmineqlem3
StepHypRef Expression
1 lcmineqlem3.1 . . 3 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem3.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem3.3 . . 3 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem3.4 . . 3 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem2 42003 . 2 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
6 elunitcn 13389 . . . . . . . 8 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
763ad2ant3 1135 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 elfznn0 13541 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
983ad2ant2 1134 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑘 ∈ ℕ0)
10 nnm1nn0 12443 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (𝜑 → (𝑀 − 1) ∈ ℕ0)
12113ad2ant1 1133 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑀 − 1) ∈ ℕ0)
137, 9, 12expaddd 14073 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
14133expa 1118 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁𝑀))) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
1514itgeq2dv 25699 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥)
1615oveq2d 7369 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
1716sumeq2dv 15627 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
18 0red 11137 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ∈ ℝ)
19 1red 11135 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℝ)
20 0le1 11661 . . . . . . 7 0 ≤ 1
2120a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ≤ 1)
2211adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 − 1) ∈ ℕ0)
238adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
2422, 23nn0addcld 12467 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑀 − 1) + 𝑘) ∈ ℕ0)
2518, 19, 21, 24itgpowd 25973 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)))
263nncnd 12162 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℂ)
28 1cnd 11129 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℂ)
29 nn0cn 12412 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
308, 29syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℂ)
3130adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℂ)
3227, 28, 31nppcand 11518 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((𝑀 − 1) + 𝑘) + 1) = (𝑀 + 𝑘))
3332oveq2d 7369 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(((𝑀 − 1) + 𝑘) + 1)) = (1↑(𝑀 + 𝑘)))
3432oveq2d 7369 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(((𝑀 − 1) + 𝑘) + 1)) = (0↑(𝑀 + 𝑘)))
3533, 34oveq12d 7371 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))))
363adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℕ)
37 nnnn0addcl 12432 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ)
3836, 23, 37syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℕ)
3938nnzd 12516 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℤ)
40 1exp 14016 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℤ → (1↑(𝑀 + 𝑘)) = 1)
4139, 40syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(𝑀 + 𝑘)) = 1)
42 0exp 14022 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℕ → (0↑(𝑀 + 𝑘)) = 0)
4338, 42syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(𝑀 + 𝑘)) = 0)
4441, 43oveq12d 7371 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))) = (1 − 0))
4535, 44eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = (1 − 0))
46 1m0e1 12262 . . . . . . 7 (1 − 0) = 1
4745, 46eqtrdi 2780 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = 1)
4847, 32oveq12d 7371 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)) = (1 / (𝑀 + 𝑘)))
4925, 48eqtrd 2764 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (1 / (𝑀 + 𝑘)))
5049oveq2d 7369 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
5150sumeq2dv 15627 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
525, 17, 513eqtr2d 2770 1 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  [,]cicc 13269  ...cfz 13428  cexp 13986  Ccbc 14227  Σcsu 15611  citg 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-symdif 4206  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-itg 25540  df-0p 25587  df-limc 25783  df-dv 25784
This theorem is referenced by:  lcmineqlem6  42007
  Copyright terms: Public domain W3C validator