Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem3 Structured version   Visualization version   GIF version

Theorem lcmineqlem3 41491
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 30-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem3.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem3.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem3.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem3.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem3 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Distinct variable groups:   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)

Proof of Theorem lcmineqlem3
StepHypRef Expression
1 lcmineqlem3.1 . . 3 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem3.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem3.3 . . 3 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem3.4 . . 3 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem2 41490 . 2 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
6 elunitcn 13471 . . . . . . . 8 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
763ad2ant3 1133 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑥 ∈ ℂ)
8 elfznn0 13620 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
983ad2ant2 1132 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → 𝑘 ∈ ℕ0)
10 nnm1nn0 12537 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (𝜑 → (𝑀 − 1) ∈ ℕ0)
12113ad2ant1 1131 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑀 − 1) ∈ ℕ0)
137, 9, 12expaddd 14138 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀)) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
14133expa 1116 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁𝑀))) ∧ 𝑥 ∈ (0[,]1)) → (𝑥↑((𝑀 − 1) + 𝑘)) = ((𝑥↑(𝑀 − 1)) · (𝑥𝑘)))
1514itgeq2dv 25704 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥)
1615oveq2d 7430 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
1716sumeq2dv 15675 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
18 0red 11241 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ∈ ℝ)
19 1red 11239 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℝ)
20 0le1 11761 . . . . . . 7 0 ≤ 1
2120a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 0 ≤ 1)
2211adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 − 1) ∈ ℕ0)
238adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
2422, 23nn0addcld 12560 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑀 − 1) + 𝑘) ∈ ℕ0)
2518, 19, 21, 24itgpowd 25978 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)))
263nncnd 12252 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
2726adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℂ)
28 1cnd 11233 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 1 ∈ ℂ)
29 nn0cn 12506 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
308, 29syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℂ)
3130adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℂ)
3227, 28, 31nppcand 11620 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((𝑀 − 1) + 𝑘) + 1) = (𝑀 + 𝑘))
3332oveq2d 7430 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(((𝑀 − 1) + 𝑘) + 1)) = (1↑(𝑀 + 𝑘)))
3432oveq2d 7430 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(((𝑀 − 1) + 𝑘) + 1)) = (0↑(𝑀 + 𝑘)))
3533, 34oveq12d 7432 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))))
363adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℕ)
37 nnnn0addcl 12526 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ)
3836, 23, 37syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℕ)
3938nnzd 12609 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℤ)
40 1exp 14082 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℤ → (1↑(𝑀 + 𝑘)) = 1)
4139, 40syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1↑(𝑀 + 𝑘)) = 1)
42 0exp 14088 . . . . . . . . . 10 ((𝑀 + 𝑘) ∈ ℕ → (0↑(𝑀 + 𝑘)) = 0)
4338, 42syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (0↑(𝑀 + 𝑘)) = 0)
4441, 43oveq12d 7432 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(𝑀 + 𝑘)) − (0↑(𝑀 + 𝑘))) = (1 − 0))
4535, 44eqtrd 2767 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = (1 − 0))
46 1m0e1 12357 . . . . . . 7 (1 − 0) = 1
4745, 46eqtrdi 2783 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) = 1)
4847, 32oveq12d 7432 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((1↑(((𝑀 − 1) + 𝑘) + 1)) − (0↑(((𝑀 − 1) + 𝑘) + 1))) / (((𝑀 − 1) + 𝑘) + 1)) = (1 / (𝑀 + 𝑘)))
4925, 48eqtrd 2767 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥 = (1 / (𝑀 + 𝑘)))
5049oveq2d 7430 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
5150sumeq2dv 15675 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)(𝑥↑((𝑀 − 1) + 𝑘)) d𝑥) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
525, 17, 513eqtr2d 2773 1 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  (class class class)co 7414  cc 11130  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137  cle 11273  cmin 11468  -cneg 11469   / cdiv 11895  cn 12236  0cn0 12496  cz 12582  [,]cicc 13353  ...cfz 13510  cexp 14052  Ccbc 14287  Σcsu 15658  citg 25540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cc 10452  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-symdif 4238  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-ovol 25386  df-vol 25387  df-mbf 25541  df-itg1 25542  df-itg2 25543  df-ibl 25544  df-itg 25545  df-0p 25592  df-limc 25788  df-dv 25789
This theorem is referenced by:  lcmineqlem6  41494
  Copyright terms: Public domain W3C validator