MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomfallfaclem1 Structured version   Visualization version   GIF version

Theorem binomfallfaclem1 15849
Description: Lemma for binomfallfac 15851. Closure law. (Contributed by Scott Fenton, 13-Mar-2018.)
Hypotheses
Ref Expression
binomfallfaclem.1 (𝜑𝐴 ∈ ℂ)
binomfallfaclem.2 (𝜑𝐵 ∈ ℂ)
binomfallfaclem.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
binomfallfaclem1 ((𝜑𝐾 ∈ (0...𝑁)) → ((𝑁C𝐾) · ((𝐴 FallFac (𝑁𝐾)) · (𝐵 FallFac (𝐾 + 1)))) ∈ ℂ)

Proof of Theorem binomfallfaclem1
StepHypRef Expression
1 binomfallfaclem.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
2 elfzelz 13362 . . . 4 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
3 bccl 14142 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
41, 2, 3syl2an 597 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) ∈ ℕ0)
54nn0cnd 12401 . 2 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) ∈ ℂ)
6 binomfallfaclem.1 . . . 4 (𝜑𝐴 ∈ ℂ)
7 fznn0sub 13394 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
8 fallfaccl 15826 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑁𝐾) ∈ ℕ0) → (𝐴 FallFac (𝑁𝐾)) ∈ ℂ)
96, 7, 8syl2an 597 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝐴 FallFac (𝑁𝐾)) ∈ ℂ)
10 binomfallfaclem.2 . . . 4 (𝜑𝐵 ∈ ℂ)
11 elfznn0 13455 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
12 peano2nn0 12379 . . . . 5 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
1311, 12syl 17 . . . 4 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℕ0)
14 fallfaccl 15826 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐾 + 1) ∈ ℕ0) → (𝐵 FallFac (𝐾 + 1)) ∈ ℂ)
1510, 13, 14syl2an 597 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝐵 FallFac (𝐾 + 1)) ∈ ℂ)
169, 15mulcld 11101 . 2 ((𝜑𝐾 ∈ (0...𝑁)) → ((𝐴 FallFac (𝑁𝐾)) · (𝐵 FallFac (𝐾 + 1))) ∈ ℂ)
175, 16mulcld 11101 1 ((𝜑𝐾 ∈ (0...𝑁)) → ((𝑁C𝐾) · ((𝐴 FallFac (𝑁𝐾)) · (𝐵 FallFac (𝐾 + 1)))) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106  (class class class)co 7342  cc 10975  0cc0 10977  1c1 10978   + caddc 10980   · cmul 10982  cmin 11311  0cn0 12339  cz 12425  ...cfz 13345  Ccbc 14122   FallFac cfallfac 15814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-fz 13346  df-fzo 13489  df-seq 13828  df-exp 13889  df-fac 14094  df-bc 14123  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-prod 15716  df-fallfac 15817
This theorem is referenced by:  binomfallfaclem2  15850
  Copyright terms: Public domain W3C validator