Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > binomfallfaclem1 | Structured version Visualization version GIF version |
Description: Lemma for binomfallfac 15851. Closure law. (Contributed by Scott Fenton, 13-Mar-2018.) |
Ref | Expression |
---|---|
binomfallfaclem.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
binomfallfaclem.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
binomfallfaclem.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
binomfallfaclem1 | ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁C𝐾) · ((𝐴 FallFac (𝑁 − 𝐾)) · (𝐵 FallFac (𝐾 + 1)))) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomfallfaclem.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | elfzelz 13362 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
3 | bccl 14142 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0) | |
4 | 1, 2, 3 | syl2an 597 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) ∈ ℕ0) |
5 | 4 | nn0cnd 12401 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) ∈ ℂ) |
6 | binomfallfaclem.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
7 | fznn0sub 13394 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | |
8 | fallfaccl 15826 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 − 𝐾) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 𝐾)) ∈ ℂ) | |
9 | 6, 7, 8 | syl2an 597 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝐴 FallFac (𝑁 − 𝐾)) ∈ ℂ) |
10 | binomfallfaclem.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
11 | elfznn0 13455 | . . . . 5 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | |
12 | peano2nn0 12379 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℕ0) |
14 | fallfaccl 15826 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐾 + 1) ∈ ℕ0) → (𝐵 FallFac (𝐾 + 1)) ∈ ℂ) | |
15 | 10, 13, 14 | syl2an 597 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝐵 FallFac (𝐾 + 1)) ∈ ℂ) |
16 | 9, 15 | mulcld 11101 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → ((𝐴 FallFac (𝑁 − 𝐾)) · (𝐵 FallFac (𝐾 + 1))) ∈ ℂ) |
17 | 5, 16 | mulcld 11101 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁C𝐾) · ((𝐴 FallFac (𝑁 − 𝐾)) · (𝐵 FallFac (𝐾 + 1)))) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 (class class class)co 7342 ℂcc 10975 0cc0 10977 1c1 10978 + caddc 10980 · cmul 10982 − cmin 11311 ℕ0cn0 12339 ℤcz 12425 ...cfz 13345 Ccbc 14122 FallFac cfallfac 15814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-sup 9304 df-oi 9372 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-rp 12837 df-fz 13346 df-fzo 13489 df-seq 13828 df-exp 13889 df-fac 14094 df-bc 14123 df-hash 14151 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-clim 15297 df-prod 15716 df-fallfac 15817 |
This theorem is referenced by: binomfallfaclem2 15850 |
Copyright terms: Public domain | W3C validator |