Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elq2 Structured version   Visualization version   GIF version

Theorem elq2 32794
Description: Elementhood in the rational numbers, providing the canonical representation. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Assertion
Ref Expression
elq2 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Distinct variable group:   𝑄,𝑝,𝑞

Proof of Theorem elq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞))
21eqeq2d 2742 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑄 = (𝑝 / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞)))
3 oveq1 7353 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞))
43eqeq1d 2733 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑝 gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1))
52, 4anbi12d 632 . . 3 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1)))
6 oveq2 7354 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
76eqeq2d 2742 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦)))))
8 oveq2 7354 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))))
98eqeq1d 2733 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
107, 9anbi12d 632 . . 3 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)))
11 simpllr 775 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
12 simplr 768 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1312nnzd 12495 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1412nnne0d 12175 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ≠ 0)
15 divgcdz 16422 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
1611, 13, 14, 15syl3anc 1373 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
17 divgcdnnr 16427 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
1812, 11, 17syl2anc 584 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
19 simpr 484 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = (𝑥 / 𝑦))
2011zcnd 12578 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
2112nncnd 12141 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2211, 13gcdcld 16419 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℕ0)
2322nn0cnd 12444 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℂ)
2414neneqd 2933 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ 𝑦 = 0)
2524intnand 488 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ (𝑥 = 0 ∧ 𝑦 = 0))
26 gcdeq0 16428 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
2726necon3abid 2964 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) ≠ 0 ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0)))
2827biimpar 477 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑦 = 0)) → (𝑥 gcd 𝑦) ≠ 0)
2911, 13, 25, 28syl21anc 837 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ≠ 0)
3020, 21, 23, 14, 29divcan7d 11925 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) = (𝑥 / 𝑦))
3119, 30eqtr4d 2769 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
32 divgcdcoprm0 16576 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3311, 13, 14, 32syl3anc 1373 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3431, 33jca 511 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
355, 10, 16, 18, 342rspcedvdw 3586 . 2 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
36 elq 12848 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3736biimpi 216 . 2 (𝑄 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3835, 37r19.29vva 3192 1 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  (class class class)co 7346  0cc0 11006  1c1 11007   / cdiv 11774  cn 12125  cz 12468  cq 12846   gcd cgcd 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406
This theorem is referenced by:  cos9thpiminplylem2  33796
  Copyright terms: Public domain W3C validator