| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7407 |
. . . . 5
⊢ (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞)) |
| 2 | 1 | eqeq2d 2745 |
. . . 4
⊢ (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑄 = (𝑝 / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞))) |
| 3 | | oveq1 7407 |
. . . . 5
⊢ (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞)) |
| 4 | 3 | eqeq1d 2736 |
. . . 4
⊢ (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑝 gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1)) |
| 5 | 2, 4 | anbi12d 632 |
. . 3
⊢ (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1))) |
| 6 | | oveq2 7408 |
. . . . 5
⊢ (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦)))) |
| 7 | 6 | eqeq2d 2745 |
. . . 4
⊢ (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))) |
| 8 | | oveq2 7408 |
. . . . 5
⊢ (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦)))) |
| 9 | 8 | eqeq1d 2736 |
. . . 4
⊢ (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)) |
| 10 | 7, 9 | anbi12d 632 |
. . 3
⊢ (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))) |
| 11 | | simpllr 775 |
. . . 4
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ) |
| 12 | | simplr 768 |
. . . . 5
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ) |
| 13 | 12 | nnzd 12608 |
. . . 4
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ) |
| 14 | 12 | nnne0d 12283 |
. . . 4
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ≠ 0) |
| 15 | | divgcdz 16517 |
. . . 4
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ) |
| 16 | 11, 13, 14, 15 | syl3anc 1372 |
. . 3
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ) |
| 17 | | divgcdnnr 16522 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ) |
| 18 | 12, 11, 17 | syl2anc 584 |
. . 3
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ) |
| 19 | | simpr 484 |
. . . . 5
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = (𝑥 / 𝑦)) |
| 20 | 11 | zcnd 12691 |
. . . . . 6
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ) |
| 21 | 12 | nncnd 12249 |
. . . . . 6
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ) |
| 22 | 11, 13 | gcdcld 16514 |
. . . . . . 7
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈
ℕ0) |
| 23 | 22 | nn0cnd 12557 |
. . . . . 6
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℂ) |
| 24 | 14 | neneqd 2936 |
. . . . . . . 8
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ 𝑦 = 0) |
| 25 | 24 | intnand 488 |
. . . . . . 7
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ (𝑥 = 0 ∧ 𝑦 = 0)) |
| 26 | | gcdeq0 16523 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0))) |
| 27 | 26 | necon3abid 2967 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) ≠ 0 ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0))) |
| 28 | 27 | biimpar 477 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ¬
(𝑥 = 0 ∧ 𝑦 = 0)) → (𝑥 gcd 𝑦) ≠ 0) |
| 29 | 11, 13, 25, 28 | syl21anc 837 |
. . . . . 6
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ≠ 0) |
| 30 | 20, 21, 23, 14, 29 | divcan7d 12038 |
. . . . 5
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) = (𝑥 / 𝑦)) |
| 31 | 19, 30 | eqtr4d 2772 |
. . . 4
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦)))) |
| 32 | | divgcdcoprm0 16671 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1) |
| 33 | 11, 13, 14, 32 | syl3anc 1372 |
. . . 4
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1) |
| 34 | 31, 33 | jca 511 |
. . 3
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)) |
| 35 | 5, 10, 16, 18, 34 | 2rspcedvdw 3613 |
. 2
⊢ ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1)) |
| 36 | | elq 12959 |
. . 3
⊢ (𝑄 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝑄 = (𝑥 / 𝑦)) |
| 37 | 36 | biimpi 216 |
. 2
⊢ (𝑄 ∈ ℚ →
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝑄 = (𝑥 / 𝑦)) |
| 38 | 35, 37 | r19.29vva 3199 |
1
⊢ (𝑄 ∈ ℚ →
∃𝑝 ∈ ℤ
∃𝑞 ∈ ℕ
(𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1)) |