Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elq2 Structured version   Visualization version   GIF version

Theorem elq2 32727
Description: Elementhood in the rational numbers, providing the canonical representation. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Assertion
Ref Expression
elq2 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Distinct variable group:   𝑄,𝑝,𝑞

Proof of Theorem elq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7407 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞))
21eqeq2d 2745 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑄 = (𝑝 / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞)))
3 oveq1 7407 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞))
43eqeq1d 2736 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑝 gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1))
52, 4anbi12d 632 . . 3 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1)))
6 oveq2 7408 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
76eqeq2d 2745 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦)))))
8 oveq2 7408 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))))
98eqeq1d 2736 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
107, 9anbi12d 632 . . 3 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)))
11 simpllr 775 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
12 simplr 768 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1312nnzd 12608 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1412nnne0d 12283 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ≠ 0)
15 divgcdz 16517 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
1611, 13, 14, 15syl3anc 1372 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
17 divgcdnnr 16522 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
1812, 11, 17syl2anc 584 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
19 simpr 484 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = (𝑥 / 𝑦))
2011zcnd 12691 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
2112nncnd 12249 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2211, 13gcdcld 16514 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℕ0)
2322nn0cnd 12557 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℂ)
2414neneqd 2936 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ 𝑦 = 0)
2524intnand 488 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ (𝑥 = 0 ∧ 𝑦 = 0))
26 gcdeq0 16523 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
2726necon3abid 2967 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) ≠ 0 ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0)))
2827biimpar 477 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑦 = 0)) → (𝑥 gcd 𝑦) ≠ 0)
2911, 13, 25, 28syl21anc 837 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ≠ 0)
3020, 21, 23, 14, 29divcan7d 12038 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) = (𝑥 / 𝑦))
3119, 30eqtr4d 2772 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
32 divgcdcoprm0 16671 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3311, 13, 14, 32syl3anc 1372 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3431, 33jca 511 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
355, 10, 16, 18, 342rspcedvdw 3613 . 2 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
36 elq 12959 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3736biimpi 216 . 2 (𝑄 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3835, 37r19.29vva 3199 1 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  (class class class)co 7400  0cc0 11122  1c1 11123   / cdiv 11887  cn 12233  cz 12581  cq 12957   gcd cgcd 16500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-sup 9449  df-inf 9450  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-q 12958  df-rp 13002  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-dvds 16260  df-gcd 16501
This theorem is referenced by:  cos9thpiminplylem2  33752
  Copyright terms: Public domain W3C validator