Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elq2 Structured version   Visualization version   GIF version

Theorem elq2 32756
Description: Elementhood in the rational numbers, providing the canonical representation. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Assertion
Ref Expression
elq2 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Distinct variable group:   𝑄,𝑝,𝑞

Proof of Theorem elq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞))
21eqeq2d 2740 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑄 = (𝑝 / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞)))
3 oveq1 7356 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞))
43eqeq1d 2731 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑝 gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1))
52, 4anbi12d 632 . . 3 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1)))
6 oveq2 7357 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
76eqeq2d 2740 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦)))))
8 oveq2 7357 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))))
98eqeq1d 2731 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
107, 9anbi12d 632 . . 3 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)))
11 simpllr 775 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
12 simplr 768 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1312nnzd 12498 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1412nnne0d 12178 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ≠ 0)
15 divgcdz 16422 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
1611, 13, 14, 15syl3anc 1373 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
17 divgcdnnr 16427 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
1812, 11, 17syl2anc 584 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
19 simpr 484 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = (𝑥 / 𝑦))
2011zcnd 12581 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
2112nncnd 12144 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2211, 13gcdcld 16419 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℕ0)
2322nn0cnd 12447 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℂ)
2414neneqd 2930 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ 𝑦 = 0)
2524intnand 488 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ (𝑥 = 0 ∧ 𝑦 = 0))
26 gcdeq0 16428 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
2726necon3abid 2961 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) ≠ 0 ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0)))
2827biimpar 477 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑦 = 0)) → (𝑥 gcd 𝑦) ≠ 0)
2911, 13, 25, 28syl21anc 837 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ≠ 0)
3020, 21, 23, 14, 29divcan7d 11928 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) = (𝑥 / 𝑦))
3119, 30eqtr4d 2767 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
32 divgcdcoprm0 16576 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3311, 13, 14, 32syl3anc 1373 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3431, 33jca 511 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
355, 10, 16, 18, 342rspcedvdw 3591 . 2 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
36 elq 12851 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3736biimpi 216 . 2 (𝑄 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3835, 37r19.29vva 3189 1 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7349  0cc0 11009  1c1 11010   / cdiv 11777  cn 12128  cz 12471  cq 12849   gcd cgcd 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406
This theorem is referenced by:  cos9thpiminplylem2  33750
  Copyright terms: Public domain W3C validator