Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elq2 Structured version   Visualization version   GIF version

Theorem elq2 32742
Description: Elementhood in the rational numbers, providing the canonical representation. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Assertion
Ref Expression
elq2 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Distinct variable group:   𝑄,𝑝,𝑞

Proof of Theorem elq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7396 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞))
21eqeq2d 2741 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑄 = (𝑝 / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞)))
3 oveq1 7396 . . . . 5 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → (𝑝 gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞))
43eqeq1d 2732 . . . 4 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑝 gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1))
52, 4anbi12d 632 . . 3 (𝑝 = (𝑥 / (𝑥 gcd 𝑦)) → ((𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1)))
6 oveq2 7397 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
76eqeq2d 2741 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ↔ 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦)))))
8 oveq2 7397 . . . . 5 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))))
98eqeq1d 2732 . . . 4 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → (((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1 ↔ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
107, 9anbi12d 632 . . 3 (𝑞 = (𝑦 / (𝑥 gcd 𝑦)) → ((𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / 𝑞) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd 𝑞) = 1) ↔ (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)))
11 simpllr 775 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
12 simplr 768 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1312nnzd 12562 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1412nnne0d 12237 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ≠ 0)
15 divgcdz 16487 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
1611, 13, 14, 15syl3anc 1373 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 / (𝑥 gcd 𝑦)) ∈ ℤ)
17 divgcdnnr 16492 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
1812, 11, 17syl2anc 584 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑦 / (𝑥 gcd 𝑦)) ∈ ℕ)
19 simpr 484 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = (𝑥 / 𝑦))
2011zcnd 12645 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
2112nncnd 12203 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2211, 13gcdcld 16484 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℕ0)
2322nn0cnd 12511 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ∈ ℂ)
2414neneqd 2931 . . . . . . . 8 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ 𝑦 = 0)
2524intnand 488 . . . . . . 7 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ¬ (𝑥 = 0 ∧ 𝑦 = 0))
26 gcdeq0 16493 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) = 0 ↔ (𝑥 = 0 ∧ 𝑦 = 0)))
2726necon3abid 2962 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 gcd 𝑦) ≠ 0 ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0)))
2827biimpar 477 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑦 = 0)) → (𝑥 gcd 𝑦) ≠ 0)
2911, 13, 25, 28syl21anc 837 . . . . . 6 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑥 gcd 𝑦) ≠ 0)
3020, 21, 23, 14, 29divcan7d 11992 . . . . 5 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) = (𝑥 / 𝑦))
3119, 30eqtr4d 2768 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → 𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))))
32 divgcdcoprm0 16641 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3311, 13, 14, 32syl3anc 1373 . . . 4 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1)
3431, 33jca 511 . . 3 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → (𝑄 = ((𝑥 / (𝑥 gcd 𝑦)) / (𝑦 / (𝑥 gcd 𝑦))) ∧ ((𝑥 / (𝑥 gcd 𝑦)) gcd (𝑦 / (𝑥 gcd 𝑦))) = 1))
355, 10, 16, 18, 342rspcedvdw 3605 . 2 ((((𝑄 ∈ ℚ ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑄 = (𝑥 / 𝑦)) → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
36 elq 12915 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3736biimpi 216 . 2 (𝑄 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑄 = (𝑥 / 𝑦))
3835, 37r19.29vva 3198 1 (𝑄 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑄 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  (class class class)co 7389  0cc0 11074  1c1 11075   / cdiv 11841  cn 12187  cz 12535  cq 12913   gcd cgcd 16470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-dvds 16229  df-gcd 16471
This theorem is referenced by:  cos9thpiminplylem2  33779
  Copyright terms: Public domain W3C validator