| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > embedsetcestrc | Structured version Visualization version GIF version | ||
| Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is an embedding. According to definition 3.27 (1) of [Adamek] p. 34, a functor "F is called an embedding provided that F is injective on morphisms", or according to remark 3.28 (1) in [Adamek] p. 34, "a functor is an embedding if and only if it is faithful and injective on objects". (Contributed by AV, 31-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
| funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
| funcsetcestrc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| embedsetcestrc.b | ⊢ 𝐵 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| embedsetcestrc | ⊢ (𝜑 → (𝐹(𝑆 Faith 𝐸)𝐺 ∧ 𝐹:𝐶–1-1→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 2 | funcsetcestrc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | funcsetcestrc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) | |
| 4 | funcsetcestrc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 5 | funcsetcestrc.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
| 7 | funcsetcestrc.e | . . 3 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | fthsetcestrc 18185 | . 2 ⊢ (𝜑 → 𝐹(𝑆 Faith 𝐸)𝐺) |
| 9 | embedsetcestrc.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
| 10 | 1, 2, 3, 4, 5, 7, 9 | embedsetcestrclem 18177 | . 2 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) |
| 11 | 8, 10 | jca 511 | 1 ⊢ (𝜑 → (𝐹(𝑆 Faith 𝐸)𝐺 ∧ 𝐹:𝐶–1-1→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4608 〈cop 4614 class class class wbr 5125 ↦ cmpt 5207 I cid 5559 ↾ cres 5669 –1-1→wf1 6539 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ωcom 7870 ↑m cmap 8849 WUnicwun 10723 ndxcnx 17213 Basecbs 17230 Faith cfth 17926 SetCatcsetc 18096 ExtStrCatcestrc 18142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-oadd 8493 df-omul 8494 df-er 8728 df-ec 8730 df-qs 8734 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-wun 10725 df-ni 10895 df-pli 10896 df-mi 10897 df-lti 10898 df-plpq 10931 df-mpq 10932 df-ltpq 10933 df-enq 10934 df-nq 10935 df-erq 10936 df-plq 10937 df-mq 10938 df-1nq 10939 df-rq 10940 df-ltnq 10941 df-np 11004 df-plp 11006 df-ltp 11008 df-enr 11078 df-nr 11079 df-c 11144 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17301 df-cco 17302 df-cat 17687 df-cid 17688 df-func 17879 df-fth 17928 df-setc 18097 df-estrc 18143 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |