![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > embedsetcestrc | Structured version Visualization version GIF version |
Description: The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is an embedding. According to definition 3.27 (1) of [Adamek] p. 34, a functor "F is called an embedding provided that F is injective on morphisms", or according to remark 3.28 (1) in [Adamek] p. 34, "a functor is an embedding if and only if it is faithful and injective on objects". (Contributed by AV, 31-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | β’ π = (SetCatβπ) |
funcsetcestrc.c | β’ πΆ = (Baseβπ) |
funcsetcestrc.f | β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) |
funcsetcestrc.u | β’ (π β π β WUni) |
funcsetcestrc.o | β’ (π β Ο β π) |
funcsetcestrc.g | β’ (π β πΊ = (π₯ β πΆ, π¦ β πΆ β¦ ( I βΎ (π¦ βm π₯)))) |
funcsetcestrc.e | β’ πΈ = (ExtStrCatβπ) |
embedsetcestrc.b | β’ π΅ = (BaseβπΈ) |
Ref | Expression |
---|---|
embedsetcestrc | β’ (π β (πΉ(π Faith πΈ)πΊ β§ πΉ:πΆβ1-1βπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcsetcestrc.s | . . 3 β’ π = (SetCatβπ) | |
2 | funcsetcestrc.c | . . 3 β’ πΆ = (Baseβπ) | |
3 | funcsetcestrc.f | . . 3 β’ (π β πΉ = (π₯ β πΆ β¦ {β¨(Baseβndx), π₯β©})) | |
4 | funcsetcestrc.u | . . 3 β’ (π β π β WUni) | |
5 | funcsetcestrc.o | . . 3 β’ (π β Ο β π) | |
6 | funcsetcestrc.g | . . 3 β’ (π β πΊ = (π₯ β πΆ, π¦ β πΆ β¦ ( I βΎ (π¦ βm π₯)))) | |
7 | funcsetcestrc.e | . . 3 β’ πΈ = (ExtStrCatβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fthsetcestrc 18117 | . 2 β’ (π β πΉ(π Faith πΈ)πΊ) |
9 | embedsetcestrc.b | . . 3 β’ π΅ = (BaseβπΈ) | |
10 | 1, 2, 3, 4, 5, 7, 9 | embedsetcestrclem 18109 | . 2 β’ (π β πΉ:πΆβ1-1βπ΅) |
11 | 8, 10 | jca 513 | 1 β’ (π β (πΉ(π Faith πΈ)πΊ β§ πΉ:πΆβ1-1βπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 {csn 4629 β¨cop 4635 class class class wbr 5149 β¦ cmpt 5232 I cid 5574 βΎ cres 5679 β1-1βwf1 6541 βcfv 6544 (class class class)co 7409 β cmpo 7411 Οcom 7855 βm cmap 8820 WUnicwun 10695 ndxcnx 17126 Basecbs 17144 Faith cfth 17854 SetCatcsetc 18025 ExtStrCatcestrc 18073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-wun 10697 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-plp 10978 df-ltp 10980 df-enr 11050 df-nr 11051 df-c 11116 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-hom 17221 df-cco 17222 df-cat 17612 df-cid 17613 df-func 17808 df-fth 17856 df-setc 18026 df-estrc 18074 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |