MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum Structured version   Visualization version   GIF version

Theorem geoisum 15638
Description: The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem geoisum
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12670 . 2 0 = (ℤ‘0)
2 0zd 12381 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℤ)
3 oveq2 7315 . . . 4 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
4 eqid 2736 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
5 ovex 7340 . . . 4 (𝐴𝑘) ∈ V
63, 4, 5fvmpt 6907 . . 3 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
76adantl 483 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
8 expcl 13850 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
98adantlr 713 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
10 simpl 484 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
11 simpr 486 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
1210, 11, 7geolim 15631 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
131, 2, 7, 9, 12isumclim 15518 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  cmpt 5164  cfv 6458  (class class class)co 7307  cc 10919  0cc0 10921  1c1 10922   < clt 11059  cmin 11255   / cdiv 11682  0cn0 12283  cexp 13832  abscabs 14994  Σcsu 15446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9249  df-inf 9250  df-oi 9317  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-rp 12781  df-fz 13290  df-fzo 13433  df-fl 13562  df-seq 13772  df-exp 13833  df-hash 14095  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-clim 15246  df-rlim 15247  df-sum 15447
This theorem is referenced by:  logtayl  25864
  Copyright terms: Public domain W3C validator