Step | Hyp | Ref
| Expression |
1 | | grtriclwlk3.p |
. . . . 5
⊢ (𝜑 → 𝑃:(0..^3)–1-1-onto→𝑇) |
2 | | f1ofn 6863 |
. . . . 5
⊢ (𝑃:(0..^3)–1-1-onto→𝑇 → 𝑃 Fn (0..^3)) |
3 | | hashfn 14424 |
. . . . 5
⊢ (𝑃 Fn (0..^3) →
(♯‘𝑃) =
(♯‘(0..^3))) |
4 | 1, 2, 3 | 3syl 18 |
. . . 4
⊢ (𝜑 → (♯‘𝑃) =
(♯‘(0..^3))) |
5 | | 3nn0 12571 |
. . . . 5
⊢ 3 ∈
ℕ0 |
6 | | hashfzo0 14479 |
. . . . 5
⊢ (3 ∈
ℕ0 → (♯‘(0..^3)) = 3) |
7 | 5, 6 | mp1i 13 |
. . . 4
⊢ (𝜑 → (♯‘(0..^3)) =
3) |
8 | 4, 7 | eqtrd 2780 |
. . 3
⊢ (𝜑 → (♯‘𝑃) = 3) |
9 | | f1of 6862 |
. . . . . . . . 9
⊢ (𝑃:(0..^3)–1-1-onto→𝑇 → 𝑃:(0..^3)⟶𝑇) |
10 | 1, 9 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃:(0..^3)⟶𝑇) |
11 | | grtriclwlk3.t |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) |
12 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
13 | 12 | grtrissvtx 47795 |
. . . . . . . . 9
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → 𝑇 ⊆ (Vtx‘𝐺)) |
14 | 11, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ⊆ (Vtx‘𝐺)) |
15 | 10, 14 | jca 511 |
. . . . . . 7
⊢ (𝜑 → (𝑃:(0..^3)⟶𝑇 ∧ 𝑇 ⊆ (Vtx‘𝐺))) |
16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃:(0..^3)⟶𝑇 ∧ 𝑇 ⊆ (Vtx‘𝐺))) |
17 | | fss 6763 |
. . . . . 6
⊢ ((𝑃:(0..^3)⟶𝑇 ∧ 𝑇 ⊆ (Vtx‘𝐺)) → 𝑃:(0..^3)⟶(Vtx‘𝐺)) |
18 | | iswrdi 14566 |
. . . . . 6
⊢ (𝑃:(0..^3)⟶(Vtx‘𝐺) → 𝑃 ∈ Word (Vtx‘𝐺)) |
19 | 16, 17, 18 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → 𝑃 ∈ Word (Vtx‘𝐺)) |
20 | | oveq1 7455 |
. . . . . . . . . . . 12
⊢
((♯‘𝑃) =
3 → ((♯‘𝑃)
− 1) = (3 − 1)) |
21 | | 3m1e2 12421 |
. . . . . . . . . . . 12
⊢ (3
− 1) = 2 |
22 | 20, 21 | eqtrdi 2796 |
. . . . . . . . . . 11
⊢
((♯‘𝑃) =
3 → ((♯‘𝑃)
− 1) = 2) |
23 | 22 | oveq2d 7464 |
. . . . . . . . . 10
⊢
((♯‘𝑃) =
3 → (0..^((♯‘𝑃) − 1)) = (0..^2)) |
24 | | fzo0to2pr 13801 |
. . . . . . . . . 10
⊢ (0..^2) =
{0, 1} |
25 | 23, 24 | eqtrdi 2796 |
. . . . . . . . 9
⊢
((♯‘𝑃) =
3 → (0..^((♯‘𝑃) − 1)) = {0, 1}) |
26 | 25 | eleq2d 2830 |
. . . . . . . 8
⊢
((♯‘𝑃) =
3 → (𝑖 ∈
(0..^((♯‘𝑃)
− 1)) ↔ 𝑖 ∈
{0, 1})) |
27 | 26 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈
(0..^((♯‘𝑃)
− 1)) ↔ 𝑖 ∈
{0, 1})) |
28 | 11, 1 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝑃:(0..^3)–1-1-onto→𝑇)) |
29 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
30 | 12, 29 | grtrif1o 47793 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝑃:(0..^3)–1-1-onto→𝑇) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |
31 | | simp1 1136 |
. . . . . . . . . . . 12
⊢ (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)) |
32 | 28, 30, 31 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)) |
33 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)) |
34 | | fveq2 6920 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) |
35 | | fv0p1e1 12416 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → (𝑃‘(𝑖 + 1)) = (𝑃‘1)) |
36 | 34, 35 | preq12d 4766 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
37 | 36 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))) |
38 | 33, 37 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
39 | | simp3 1138 |
. . . . . . . . . . . 12
⊢ (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) |
40 | 28, 30, 39 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) |
41 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) |
42 | | fveq2 6920 |
. . . . . . . . . . . 12
⊢ (𝑖 = 1 → (𝑃‘𝑖) = (𝑃‘1)) |
43 | | oveq1 7455 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 1 → (𝑖 + 1) = (1 + 1)) |
44 | | 1p1e2 12418 |
. . . . . . . . . . . . . 14
⊢ (1 + 1) =
2 |
45 | 43, 44 | eqtrdi 2796 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (𝑖 + 1) = 2) |
46 | 45 | fveq2d 6924 |
. . . . . . . . . . . 12
⊢ (𝑖 = 1 → (𝑃‘(𝑖 + 1)) = (𝑃‘2)) |
47 | 42, 46 | preq12d 4766 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
48 | 47 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |
49 | 41, 48 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝑖 = 1 → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
50 | 38, 49 | jaoi 856 |
. . . . . . . 8
⊢ ((𝑖 = 0 ∨ 𝑖 = 1) → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
51 | | elpri 4671 |
. . . . . . . 8
⊢ (𝑖 ∈ {0, 1} → (𝑖 = 0 ∨ 𝑖 = 1)) |
52 | 50, 51 | syl11 33 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈ {0, 1} → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
53 | 27, 52 | sylbid 240 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈
(0..^((♯‘𝑃)
− 1)) → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
54 | 53 | ralrimiv 3151 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
55 | | ovexd 7483 |
. . . . . . . . . . . 12
⊢ (𝑃:(0..^3)–1-1-onto→𝑇 → (0..^3) ∈
V) |
56 | 9, 55 | jca 511 |
. . . . . . . . . . 11
⊢ (𝑃:(0..^3)–1-1-onto→𝑇 → (𝑃:(0..^3)⟶𝑇 ∧ (0..^3) ∈ V)) |
57 | | fex 7263 |
. . . . . . . . . . 11
⊢ ((𝑃:(0..^3)⟶𝑇 ∧ (0..^3) ∈ V) →
𝑃 ∈
V) |
58 | 1, 56, 57 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ V) |
59 | 58 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → 𝑃 ∈ V) |
60 | | lsw 14612 |
. . . . . . . . 9
⊢ (𝑃 ∈ V →
(lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
61 | 59, 60 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
62 | 22 | fveq2d 6924 |
. . . . . . . . 9
⊢
((♯‘𝑃) =
3 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘2)) |
63 | 62 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘2)) |
64 | 61, 63 | eqtrd 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (lastS‘𝑃) = (𝑃‘2)) |
65 | 64 | preq1d 4764 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) →
{(lastS‘𝑃), (𝑃‘0)} = {(𝑃‘2), (𝑃‘0)}) |
66 | | prcom 4757 |
. . . . . . . . . . 11
⊢ {(𝑃‘0), (𝑃‘2)} = {(𝑃‘2), (𝑃‘0)} |
67 | 66 | eleq1i 2835 |
. . . . . . . . . 10
⊢ ({(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ↔ {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺)) |
68 | 67 | biimpi 216 |
. . . . . . . . 9
⊢ ({(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺)) |
69 | 68 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺)) |
70 | 28, 30, 69 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺)) |
71 | 70 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺)) |
72 | 65, 71 | eqeltrd 2844 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) →
{(lastS‘𝑃), (𝑃‘0)} ∈
(Edg‘𝐺)) |
73 | 19, 54, 72 | 3jca 1128 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) |
74 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) →
(♯‘𝑃) =
3) |
75 | 73, 74 | jca 511 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝑃) = 3) → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3)) |
76 | 8, 75 | mpdan 686 |
. 2
⊢ (𝜑 → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3)) |
77 | | 3nn 12372 |
. . 3
⊢ 3 ∈
ℕ |
78 | 12, 29 | isclwwlknx 30068 |
. . 3
⊢ (3 ∈
ℕ → (𝑃 ∈ (3
ClWWalksN 𝐺) ↔ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3))) |
79 | 77, 78 | mp1i 13 |
. 2
⊢ (𝜑 → (𝑃 ∈ (3 ClWWalksN 𝐺) ↔ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3))) |
80 | 76, 79 | mpbird 257 |
1
⊢ (𝜑 → 𝑃 ∈ (3 ClWWalksN 𝐺)) |