Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtriclwlk3 Structured version   Visualization version   GIF version

Theorem grtriclwlk3 48059
Description: A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025.)
Hypotheses
Ref Expression
grtriclwlk3.t (𝜑𝑇 ∈ (GrTriangles‘𝐺))
grtriclwlk3.p (𝜑𝑃:(0..^3)–1-1-onto𝑇)
Assertion
Ref Expression
grtriclwlk3 (𝜑𝑃 ∈ (3 ClWWalksN 𝐺))

Proof of Theorem grtriclwlk3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 grtriclwlk3.p . . . . 5 (𝜑𝑃:(0..^3)–1-1-onto𝑇)
2 f1ofn 6772 . . . . 5 (𝑃:(0..^3)–1-1-onto𝑇𝑃 Fn (0..^3))
3 hashfn 14292 . . . . 5 (𝑃 Fn (0..^3) → (♯‘𝑃) = (♯‘(0..^3)))
41, 2, 33syl 18 . . . 4 (𝜑 → (♯‘𝑃) = (♯‘(0..^3)))
5 3nn0 12409 . . . . 5 3 ∈ ℕ0
6 hashfzo0 14347 . . . . 5 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
75, 6mp1i 13 . . . 4 (𝜑 → (♯‘(0..^3)) = 3)
84, 7eqtrd 2768 . . 3 (𝜑 → (♯‘𝑃) = 3)
9 f1of 6771 . . . . . . . . 9 (𝑃:(0..^3)–1-1-onto𝑇𝑃:(0..^3)⟶𝑇)
101, 9syl 17 . . . . . . . 8 (𝜑𝑃:(0..^3)⟶𝑇)
11 grtriclwlk3.t . . . . . . . . 9 (𝜑𝑇 ∈ (GrTriangles‘𝐺))
12 eqid 2733 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
1312grtrissvtx 48058 . . . . . . . . 9 (𝑇 ∈ (GrTriangles‘𝐺) → 𝑇 ⊆ (Vtx‘𝐺))
1411, 13syl 17 . . . . . . . 8 (𝜑𝑇 ⊆ (Vtx‘𝐺))
1510, 14jca 511 . . . . . . 7 (𝜑 → (𝑃:(0..^3)⟶𝑇𝑇 ⊆ (Vtx‘𝐺)))
1615adantr 480 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃:(0..^3)⟶𝑇𝑇 ⊆ (Vtx‘𝐺)))
17 fss 6675 . . . . . 6 ((𝑃:(0..^3)⟶𝑇𝑇 ⊆ (Vtx‘𝐺)) → 𝑃:(0..^3)⟶(Vtx‘𝐺))
18 iswrdi 14434 . . . . . 6 (𝑃:(0..^3)⟶(Vtx‘𝐺) → 𝑃 ∈ Word (Vtx‘𝐺))
1916, 17, 183syl 18 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 3) → 𝑃 ∈ Word (Vtx‘𝐺))
20 oveq1 7362 . . . . . . . . . . . 12 ((♯‘𝑃) = 3 → ((♯‘𝑃) − 1) = (3 − 1))
21 3m1e2 12258 . . . . . . . . . . . 12 (3 − 1) = 2
2220, 21eqtrdi 2784 . . . . . . . . . . 11 ((♯‘𝑃) = 3 → ((♯‘𝑃) − 1) = 2)
2322oveq2d 7371 . . . . . . . . . 10 ((♯‘𝑃) = 3 → (0..^((♯‘𝑃) − 1)) = (0..^2))
24 fzo0to2pr 13660 . . . . . . . . . 10 (0..^2) = {0, 1}
2523, 24eqtrdi 2784 . . . . . . . . 9 ((♯‘𝑃) = 3 → (0..^((♯‘𝑃) − 1)) = {0, 1})
2625eleq2d 2819 . . . . . . . 8 ((♯‘𝑃) = 3 → (𝑖 ∈ (0..^((♯‘𝑃) − 1)) ↔ 𝑖 ∈ {0, 1}))
2726adantl 481 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈ (0..^((♯‘𝑃) − 1)) ↔ 𝑖 ∈ {0, 1}))
2811, 1jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝑃:(0..^3)–1-1-onto𝑇))
29 eqid 2733 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
3012, 29grtrif1o 48056 . . . . . . . . . . . 12 ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝑃:(0..^3)–1-1-onto𝑇) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
31 simp1 1136 . . . . . . . . . . . 12 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
3228, 30, 313syl 18 . . . . . . . . . . 11 (𝜑 → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
3332adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
34 fveq2 6831 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
35 fv0p1e1 12253 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑃‘(𝑖 + 1)) = (𝑃‘1))
3634, 35preq12d 4695 . . . . . . . . . . 11 (𝑖 = 0 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘0), (𝑃‘1)})
3736eleq1d 2818 . . . . . . . . . 10 (𝑖 = 0 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
3833, 37imbitrrid 246 . . . . . . . . 9 (𝑖 = 0 → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
39 simp3 1138 . . . . . . . . . . . 12 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
4028, 30, 393syl 18 . . . . . . . . . . 11 (𝜑 → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
42 fveq2 6831 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑃𝑖) = (𝑃‘1))
43 oveq1 7362 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝑖 + 1) = (1 + 1))
44 1p1e2 12255 . . . . . . . . . . . . . 14 (1 + 1) = 2
4543, 44eqtrdi 2784 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑖 + 1) = 2)
4645fveq2d 6835 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑃‘(𝑖 + 1)) = (𝑃‘2))
4742, 46preq12d 4695 . . . . . . . . . . 11 (𝑖 = 1 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘1), (𝑃‘2)})
4847eleq1d 2818 . . . . . . . . . 10 (𝑖 = 1 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
4941, 48imbitrrid 246 . . . . . . . . 9 (𝑖 = 1 → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5038, 49jaoi 857 . . . . . . . 8 ((𝑖 = 0 ∨ 𝑖 = 1) → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
51 elpri 4601 . . . . . . . 8 (𝑖 ∈ {0, 1} → (𝑖 = 0 ∨ 𝑖 = 1))
5250, 51syl11 33 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈ {0, 1} → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5327, 52sylbid 240 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈ (0..^((♯‘𝑃) − 1)) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5453ralrimiv 3125 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 3) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
55 ovexd 7390 . . . . . . . . . . . 12 (𝑃:(0..^3)–1-1-onto𝑇 → (0..^3) ∈ V)
569, 55jca 511 . . . . . . . . . . 11 (𝑃:(0..^3)–1-1-onto𝑇 → (𝑃:(0..^3)⟶𝑇 ∧ (0..^3) ∈ V))
57 fex 7169 . . . . . . . . . . 11 ((𝑃:(0..^3)⟶𝑇 ∧ (0..^3) ∈ V) → 𝑃 ∈ V)
581, 56, 573syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ V)
5958adantr 480 . . . . . . . . 9 ((𝜑 ∧ (♯‘𝑃) = 3) → 𝑃 ∈ V)
60 lsw 14481 . . . . . . . . 9 (𝑃 ∈ V → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
6159, 60syl 17 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 3) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
6222fveq2d 6835 . . . . . . . . 9 ((♯‘𝑃) = 3 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘2))
6362adantl 481 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘2))
6461, 63eqtrd 2768 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 3) → (lastS‘𝑃) = (𝑃‘2))
6564preq1d 4693 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → {(lastS‘𝑃), (𝑃‘0)} = {(𝑃‘2), (𝑃‘0)})
66 prcom 4686 . . . . . . . . . . 11 {(𝑃‘0), (𝑃‘2)} = {(𝑃‘2), (𝑃‘0)}
6766eleq1i 2824 . . . . . . . . . 10 ({(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ↔ {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
6867biimpi 216 . . . . . . . . 9 ({(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
69683ad2ant2 1134 . . . . . . . 8 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
7028, 30, 693syl 18 . . . . . . 7 (𝜑 → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
7170adantr 480 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
7265, 71eqeltrd 2833 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 3) → {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))
7319, 54, 723jca 1128 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)))
74 simpr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 3) → (♯‘𝑃) = 3)
7573, 74jca 511 . . 3 ((𝜑 ∧ (♯‘𝑃) = 3) → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3))
768, 75mpdan 687 . 2 (𝜑 → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3))
77 3nn 12214 . . 3 3 ∈ ℕ
7812, 29isclwwlknx 30027 . . 3 (3 ∈ ℕ → (𝑃 ∈ (3 ClWWalksN 𝐺) ↔ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3)))
7977, 78mp1i 13 . 2 (𝜑 → (𝑃 ∈ (3 ClWWalksN 𝐺) ↔ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3)))
8076, 79mpbird 257 1 (𝜑𝑃 ∈ (3 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  wss 3899  {cpr 4579   Fn wfn 6484  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  0cc0 11016  1c1 11017   + caddc 11019  cmin 11354  cn 12135  2c2 12190  3c3 12191  0cn0 12391  ..^cfzo 13564  chash 14247  Word cword 14430  lastSclsw 14479  Vtxcvtx 28985  Edgcedg 29036   ClWWalksN cclwwlkn 30015  GrTrianglescgrtri 48051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-3o 8396  df-oadd 8398  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-lsw 14480  df-clwwlk 29973  df-clwwlkn 30016  df-grtri 48052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator