Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grtriclwlk3 Structured version   Visualization version   GIF version

Theorem grtriclwlk3 47955
Description: A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025.)
Hypotheses
Ref Expression
grtriclwlk3.t (𝜑𝑇 ∈ (GrTriangles‘𝐺))
grtriclwlk3.p (𝜑𝑃:(0..^3)–1-1-onto𝑇)
Assertion
Ref Expression
grtriclwlk3 (𝜑𝑃 ∈ (3 ClWWalksN 𝐺))

Proof of Theorem grtriclwlk3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 grtriclwlk3.p . . . . 5 (𝜑𝑃:(0..^3)–1-1-onto𝑇)
2 f1ofn 6760 . . . . 5 (𝑃:(0..^3)–1-1-onto𝑇𝑃 Fn (0..^3))
3 hashfn 14274 . . . . 5 (𝑃 Fn (0..^3) → (♯‘𝑃) = (♯‘(0..^3)))
41, 2, 33syl 18 . . . 4 (𝜑 → (♯‘𝑃) = (♯‘(0..^3)))
5 3nn0 12391 . . . . 5 3 ∈ ℕ0
6 hashfzo0 14329 . . . . 5 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
75, 6mp1i 13 . . . 4 (𝜑 → (♯‘(0..^3)) = 3)
84, 7eqtrd 2765 . . 3 (𝜑 → (♯‘𝑃) = 3)
9 f1of 6759 . . . . . . . . 9 (𝑃:(0..^3)–1-1-onto𝑇𝑃:(0..^3)⟶𝑇)
101, 9syl 17 . . . . . . . 8 (𝜑𝑃:(0..^3)⟶𝑇)
11 grtriclwlk3.t . . . . . . . . 9 (𝜑𝑇 ∈ (GrTriangles‘𝐺))
12 eqid 2730 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
1312grtrissvtx 47954 . . . . . . . . 9 (𝑇 ∈ (GrTriangles‘𝐺) → 𝑇 ⊆ (Vtx‘𝐺))
1411, 13syl 17 . . . . . . . 8 (𝜑𝑇 ⊆ (Vtx‘𝐺))
1510, 14jca 511 . . . . . . 7 (𝜑 → (𝑃:(0..^3)⟶𝑇𝑇 ⊆ (Vtx‘𝐺)))
1615adantr 480 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃:(0..^3)⟶𝑇𝑇 ⊆ (Vtx‘𝐺)))
17 fss 6663 . . . . . 6 ((𝑃:(0..^3)⟶𝑇𝑇 ⊆ (Vtx‘𝐺)) → 𝑃:(0..^3)⟶(Vtx‘𝐺))
18 iswrdi 14416 . . . . . 6 (𝑃:(0..^3)⟶(Vtx‘𝐺) → 𝑃 ∈ Word (Vtx‘𝐺))
1916, 17, 183syl 18 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 3) → 𝑃 ∈ Word (Vtx‘𝐺))
20 oveq1 7348 . . . . . . . . . . . 12 ((♯‘𝑃) = 3 → ((♯‘𝑃) − 1) = (3 − 1))
21 3m1e2 12240 . . . . . . . . . . . 12 (3 − 1) = 2
2220, 21eqtrdi 2781 . . . . . . . . . . 11 ((♯‘𝑃) = 3 → ((♯‘𝑃) − 1) = 2)
2322oveq2d 7357 . . . . . . . . . 10 ((♯‘𝑃) = 3 → (0..^((♯‘𝑃) − 1)) = (0..^2))
24 fzo0to2pr 13642 . . . . . . . . . 10 (0..^2) = {0, 1}
2523, 24eqtrdi 2781 . . . . . . . . 9 ((♯‘𝑃) = 3 → (0..^((♯‘𝑃) − 1)) = {0, 1})
2625eleq2d 2815 . . . . . . . 8 ((♯‘𝑃) = 3 → (𝑖 ∈ (0..^((♯‘𝑃) − 1)) ↔ 𝑖 ∈ {0, 1}))
2726adantl 481 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈ (0..^((♯‘𝑃) − 1)) ↔ 𝑖 ∈ {0, 1}))
2811, 1jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝑃:(0..^3)–1-1-onto𝑇))
29 eqid 2730 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
3012, 29grtrif1o 47952 . . . . . . . . . . . 12 ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝑃:(0..^3)–1-1-onto𝑇) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
31 simp1 1136 . . . . . . . . . . . 12 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
3228, 30, 313syl 18 . . . . . . . . . . 11 (𝜑 → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
3332adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
34 fveq2 6817 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
35 fv0p1e1 12235 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑃‘(𝑖 + 1)) = (𝑃‘1))
3634, 35preq12d 4692 . . . . . . . . . . 11 (𝑖 = 0 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘0), (𝑃‘1)})
3736eleq1d 2814 . . . . . . . . . 10 (𝑖 = 0 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
3833, 37imbitrrid 246 . . . . . . . . 9 (𝑖 = 0 → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
39 simp3 1138 . . . . . . . . . . . 12 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
4028, 30, 393syl 18 . . . . . . . . . . 11 (𝜑 → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
42 fveq2 6817 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑃𝑖) = (𝑃‘1))
43 oveq1 7348 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝑖 + 1) = (1 + 1))
44 1p1e2 12237 . . . . . . . . . . . . . 14 (1 + 1) = 2
4543, 44eqtrdi 2781 . . . . . . . . . . . . 13 (𝑖 = 1 → (𝑖 + 1) = 2)
4645fveq2d 6821 . . . . . . . . . . . 12 (𝑖 = 1 → (𝑃‘(𝑖 + 1)) = (𝑃‘2))
4742, 46preq12d 4692 . . . . . . . . . . 11 (𝑖 = 1 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘1), (𝑃‘2)})
4847eleq1d 2814 . . . . . . . . . 10 (𝑖 = 1 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
4941, 48imbitrrid 246 . . . . . . . . 9 (𝑖 = 1 → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5038, 49jaoi 857 . . . . . . . 8 ((𝑖 = 0 ∨ 𝑖 = 1) → ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
51 elpri 4598 . . . . . . . 8 (𝑖 ∈ {0, 1} → (𝑖 = 0 ∨ 𝑖 = 1))
5250, 51syl11 33 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈ {0, 1} → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5327, 52sylbid 240 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑖 ∈ (0..^((♯‘𝑃) − 1)) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5453ralrimiv 3121 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 3) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
55 ovexd 7376 . . . . . . . . . . . 12 (𝑃:(0..^3)–1-1-onto𝑇 → (0..^3) ∈ V)
569, 55jca 511 . . . . . . . . . . 11 (𝑃:(0..^3)–1-1-onto𝑇 → (𝑃:(0..^3)⟶𝑇 ∧ (0..^3) ∈ V))
57 fex 7155 . . . . . . . . . . 11 ((𝑃:(0..^3)⟶𝑇 ∧ (0..^3) ∈ V) → 𝑃 ∈ V)
581, 56, 573syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ V)
5958adantr 480 . . . . . . . . 9 ((𝜑 ∧ (♯‘𝑃) = 3) → 𝑃 ∈ V)
60 lsw 14463 . . . . . . . . 9 (𝑃 ∈ V → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
6159, 60syl 17 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 3) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
6222fveq2d 6821 . . . . . . . . 9 ((♯‘𝑃) = 3 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘2))
6362adantl 481 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘2))
6461, 63eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (♯‘𝑃) = 3) → (lastS‘𝑃) = (𝑃‘2))
6564preq1d 4690 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → {(lastS‘𝑃), (𝑃‘0)} = {(𝑃‘2), (𝑃‘0)})
66 prcom 4683 . . . . . . . . . . 11 {(𝑃‘0), (𝑃‘2)} = {(𝑃‘2), (𝑃‘0)}
6766eleq1i 2820 . . . . . . . . . 10 ({(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ↔ {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
6867biimpi 216 . . . . . . . . 9 ({(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
69683ad2ant2 1134 . . . . . . . 8 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
7028, 30, 693syl 18 . . . . . . 7 (𝜑 → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
7170adantr 480 . . . . . 6 ((𝜑 ∧ (♯‘𝑃) = 3) → {(𝑃‘2), (𝑃‘0)} ∈ (Edg‘𝐺))
7265, 71eqeltrd 2829 . . . . 5 ((𝜑 ∧ (♯‘𝑃) = 3) → {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))
7319, 54, 723jca 1128 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 3) → (𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)))
74 simpr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 3) → (♯‘𝑃) = 3)
7573, 74jca 511 . . 3 ((𝜑 ∧ (♯‘𝑃) = 3) → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3))
768, 75mpdan 687 . 2 (𝜑 → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3))
77 3nn 12196 . . 3 3 ∈ ℕ
7812, 29isclwwlknx 30006 . . 3 (3 ∈ ℕ → (𝑃 ∈ (3 ClWWalksN 𝐺) ↔ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3)))
7977, 78mp1i 13 . 2 (𝜑 → (𝑃 ∈ (3 ClWWalksN 𝐺) ↔ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑃) = 3)))
8076, 79mpbird 257 1 (𝜑𝑃 ∈ (3 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  wss 3900  {cpr 4576   Fn wfn 6472  wf 6473  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999   + caddc 11001  cmin 11336  cn 12117  2c2 12172  3c3 12173  0cn0 12373  ..^cfzo 13546  chash 14229  Word cword 14412  lastSclsw 14461  Vtxcvtx 28967  Edgcedg 29018   ClWWalksN cclwwlkn 29994  GrTrianglescgrtri 47947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-3o 8382  df-oadd 8384  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-lsw 14462  df-clwwlk 29952  df-clwwlkn 29995  df-grtri 47948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator