![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haustsmsid | Structured version Visualization version GIF version |
Description: In a Hausdorff topological group, a finite sum sums to exactly the usual number with no extraneous limit points. By setting the topology to the discrete topology (which is Hausdorff), this theorem can be used to turn any tsums theorem into a Ξ£g theorem, so that the infinite group sum operation can be viewed as a generalization of the finite group sum. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
Ref | Expression |
---|---|
tsmsid.b | β’ π΅ = (BaseβπΊ) |
tsmsid.z | β’ 0 = (0gβπΊ) |
tsmsid.1 | β’ (π β πΊ β CMnd) |
tsmsid.2 | β’ (π β πΊ β TopSp) |
tsmsid.a | β’ (π β π΄ β π) |
tsmsid.f | β’ (π β πΉ:π΄βΆπ΅) |
tsmsid.w | β’ (π β πΉ finSupp 0 ) |
haustsmsid.j | β’ π½ = (TopOpenβπΊ) |
haustsmsid.h | β’ (π β π½ β Haus) |
Ref | Expression |
---|---|
haustsmsid | β’ (π β (πΊ tsums πΉ) = {(πΊ Ξ£g πΉ)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsid.b | . . 3 β’ π΅ = (BaseβπΊ) | |
2 | tsmsid.z | . . 3 β’ 0 = (0gβπΊ) | |
3 | tsmsid.1 | . . 3 β’ (π β πΊ β CMnd) | |
4 | tsmsid.2 | . . 3 β’ (π β πΊ β TopSp) | |
5 | tsmsid.a | . . 3 β’ (π β π΄ β π) | |
6 | tsmsid.f | . . 3 β’ (π β πΉ:π΄βΆπ΅) | |
7 | tsmsid.w | . . 3 β’ (π β πΉ finSupp 0 ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tsmsid 24062 | . 2 β’ (π β (πΊ Ξ£g πΉ) β (πΊ tsums πΉ)) |
9 | haustsmsid.j | . . 3 β’ π½ = (TopOpenβπΊ) | |
10 | haustsmsid.h | . . 3 β’ (π β π½ β Haus) | |
11 | 1, 3, 4, 5, 6, 9, 10 | haustsms2 24059 | . 2 β’ (π β ((πΊ Ξ£g πΉ) β (πΊ tsums πΉ) β (πΊ tsums πΉ) = {(πΊ Ξ£g πΉ)})) |
12 | 8, 11 | mpd 15 | 1 β’ (π β (πΊ tsums πΉ) = {(πΊ Ξ£g πΉ)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {csn 4624 class class class wbr 5143 βΆwf 6539 βcfv 6543 (class class class)co 7416 finSupp cfsupp 9385 Basecbs 17179 TopOpenctopn 17402 0gc0g 17420 Ξ£g cgsu 17421 CMndccmn 19739 TopSpctps 22852 Hauscha 23230 tsums ctsu 24048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-seq 13999 df-hash 14322 df-0g 17422 df-gsum 17423 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-cntz 19272 df-cmn 19741 df-fbas 21280 df-fg 21281 df-top 22814 df-topon 22831 df-topsp 22853 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-haus 23237 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-tsms 24049 |
This theorem is referenced by: taylpfval 26317 esumpfinval 33751 esumpfinvalf 33752 |
Copyright terms: Public domain | W3C validator |