| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochdmm1 | Structured version Visualization version GIF version | ||
| Description: De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| dochdmm1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochdmm1.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dochdmm1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochdmm1.v | ⊢ 𝑉 = (Base‘𝑈) |
| dochdmm1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochdmm1.j | ⊢ ∨ = ((joinH‘𝐾)‘𝑊) |
| dochdmm1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochdmm1.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
| dochdmm1.y | ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) |
| Ref | Expression |
|---|---|
| dochdmm1 | ⊢ (𝜑 → ( ⊥ ‘(𝑋 ∩ 𝑌)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochdmm1.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | dochdmm1.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
| 3 | dochdmm1.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dochdmm1.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | dochdmm1.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 6 | dochdmm1.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | 3, 4, 5, 6 | dihrnss 41387 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ 𝑉) |
| 8 | 1, 2, 7 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| 9 | dochdmm1.o | . . . . . . 7 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 10 | 3, 4, 6, 9 | dochssv 41464 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘𝑋) ⊆ 𝑉) |
| 12 | dochdmm1.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) | |
| 13 | 3, 4, 5, 6 | dihrnss 41387 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → 𝑌 ⊆ 𝑉) |
| 14 | 1, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ 𝑉) |
| 15 | 3, 4, 6, 9 | dochssv 41464 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉) → ( ⊥ ‘𝑌) ⊆ 𝑉) |
| 16 | 1, 14, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ 𝑉) |
| 17 | 3, 4, 6, 9 | dochdmj1 41499 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉 ∧ ( ⊥ ‘𝑌) ⊆ 𝑉) → ( ⊥ ‘(( ⊥ ‘𝑋) ∪ ( ⊥ ‘𝑌))) = (( ⊥ ‘( ⊥ ‘𝑋)) ∩ ( ⊥ ‘( ⊥ ‘𝑌)))) |
| 18 | 1, 11, 16, 17 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(( ⊥ ‘𝑋) ∪ ( ⊥ ‘𝑌))) = (( ⊥ ‘( ⊥ ‘𝑋)) ∩ ( ⊥ ‘( ⊥ ‘𝑌)))) |
| 19 | 3, 5, 9 | dochoc 41476 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 20 | 1, 2, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 21 | 3, 5, 9 | dochoc 41476 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 22 | 1, 12, 21 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 23 | 20, 22 | ineq12d 4168 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) ∩ ( ⊥ ‘( ⊥ ‘𝑌))) = (𝑋 ∩ 𝑌)) |
| 24 | 18, 23 | eqtr2d 2767 | . . 3 ⊢ (𝜑 → (𝑋 ∩ 𝑌) = ( ⊥ ‘(( ⊥ ‘𝑋) ∪ ( ⊥ ‘𝑌)))) |
| 25 | 24 | fveq2d 6826 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝑋 ∩ 𝑌)) = ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∪ ( ⊥ ‘𝑌))))) |
| 26 | dochdmm1.j | . . . 4 ⊢ ∨ = ((joinH‘𝐾)‘𝑊) | |
| 27 | 3, 4, 6, 9, 26 | djhval2 41508 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉 ∧ ( ⊥ ‘𝑌) ⊆ 𝑉) → (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∪ ( ⊥ ‘𝑌))))) |
| 28 | 1, 11, 16, 27 | syl3anc 1373 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∪ ( ⊥ ‘𝑌))))) |
| 29 | 25, 28 | eqtr4d 2769 | 1 ⊢ (𝜑 → ( ⊥ ‘(𝑋 ∩ 𝑌)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ran crn 5615 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 HLchlt 39459 LHypclh 40093 DVecHcdvh 41187 DIsoHcdih 41337 ocHcoch 41456 joinHcdjh 41503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39085 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tendo 40864 df-edring 40866 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 df-djh 41504 |
| This theorem is referenced by: lclkrlem2c 41618 lclkrslem2 41647 lcfrlem23 41674 |
| Copyright terms: Public domain | W3C validator |