Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetcl Structured version   Visualization version   GIF version

Theorem dihmeetcl 38638
 Description: Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014.)
Hypotheses
Ref Expression
dihmeetcl.h 𝐻 = (LHyp‘𝐾)
dihmeetcl.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihmeetcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) ∈ ran 𝐼)

Proof of Theorem dihmeetcl
StepHypRef Expression
1 dihmeetcl.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dihmeetcl.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihcnvid2 38566 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
43adantrr 716 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑋)) = 𝑋)
51, 2dihcnvid2 38566 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → (𝐼‘(𝐼𝑌)) = 𝑌)
65adantrl 715 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑌)) = 𝑌)
74, 6ineq12d 4140 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))) = (𝑋𝑌))
8 simpl 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 eqid 2798 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
109, 1, 2dihcnvcl 38564 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ (Base‘𝐾))
1110adantrr 716 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑋) ∈ (Base‘𝐾))
129, 1, 2dihcnvcl 38564 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → (𝐼𝑌) ∈ (Base‘𝐾))
1312adantrl 715 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑌) ∈ (Base‘𝐾))
14 eqid 2798 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
159, 14, 1, 2dihmeet 38636 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ (Base‘𝐾) ∧ (𝐼𝑌) ∈ (Base‘𝐾)) → (𝐼‘((𝐼𝑋)(meet‘𝐾)(𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
168, 11, 13, 15syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘((𝐼𝑋)(meet‘𝐾)(𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
17 hllat 36656 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝐾 ∈ Lat)
199, 14latmcl 17654 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐼𝑋) ∈ (Base‘𝐾) ∧ (𝐼𝑌) ∈ (Base‘𝐾)) → ((𝐼𝑋)(meet‘𝐾)(𝐼𝑌)) ∈ (Base‘𝐾))
2018, 11, 13, 19syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → ((𝐼𝑋)(meet‘𝐾)(𝐼𝑌)) ∈ (Base‘𝐾))
219, 1, 2dihcl 38563 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋)(meet‘𝐾)(𝐼𝑌)) ∈ (Base‘𝐾)) → (𝐼‘((𝐼𝑋)(meet‘𝐾)(𝐼𝑌))) ∈ ran 𝐼)
2220, 21syldan 594 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘((𝐼𝑋)(meet‘𝐾)(𝐼𝑌))) ∈ ran 𝐼)
2316, 22eqeltrrd 2891 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))) ∈ ran 𝐼)
247, 23eqeltrrd 2891 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) ∈ ran 𝐼)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∩ cin 3880  ◡ccnv 5518  ran crn 5520  ‘cfv 6324  (class class class)co 7135  Basecbs 16475  meetcmee 17547  Latclat 17647  HLchlt 36643  LHypclh 37277  DIsoHcdih 38521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36246 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36269  df-oposet 36469  df-ol 36471  df-oml 36472  df-covers 36559  df-ats 36560  df-atl 36591  df-cvlat 36615  df-hlat 36644  df-llines 36791  df-lplanes 36792  df-lvols 36793  df-lines 36794  df-psubsp 36796  df-pmap 36797  df-padd 37089  df-lhyp 37281  df-laut 37282  df-ldil 37397  df-ltrn 37398  df-trl 37452  df-tendo 38048  df-edring 38050  df-disoa 38322  df-dvech 38372  df-dib 38432  df-dic 38466  df-dih 38522 This theorem is referenced by:  dihmeet2  38639  dihoml4c  38669  dochdmj1  38683  lclkrlem2c  38802  lclkrlem2d  38803
 Copyright terms: Public domain W3C validator