Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeet2 | Structured version Visualization version GIF version |
Description: Reverse isomorphism H of a closed subspace intersection. (Contributed by NM, 15-Jan-2015.) |
Ref | Expression |
---|---|
dihmeet2.m | ⊢ ∧ = (meet‘𝐾) |
dihmeet2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihmeet2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihmeet2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihmeet2.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
dihmeet2.y | ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) |
Ref | Expression |
---|---|
dihmeet2 | ⊢ (𝜑 → (◡𝐼‘(𝑋 ∩ 𝑌)) = ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeet2.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dihmeet2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
3 | dihmeet2.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dihmeet2.i | . . . . . 6 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
5 | 3, 4 | dihcnvid2 38850 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
6 | 1, 2, 5 | syl2anc 588 | . . . 4 ⊢ (𝜑 → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
7 | dihmeet2.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) | |
8 | 3, 4 | dihcnvid2 38850 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) |
9 | 1, 7, 8 | syl2anc 588 | . . . 4 ⊢ (𝜑 → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) |
10 | 6, 9 | ineq12d 4119 | . . 3 ⊢ (𝜑 → ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌))) = (𝑋 ∩ 𝑌)) |
11 | eqid 2759 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
12 | 11, 3, 4 | dihcnvcl 38848 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
13 | 1, 2, 12 | syl2anc 588 | . . . 4 ⊢ (𝜑 → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
14 | 11, 3, 4 | dihcnvcl 38848 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → (◡𝐼‘𝑌) ∈ (Base‘𝐾)) |
15 | 1, 7, 14 | syl2anc 588 | . . . 4 ⊢ (𝜑 → (◡𝐼‘𝑌) ∈ (Base‘𝐾)) |
16 | dihmeet2.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
17 | 11, 16, 3, 4 | dihmeet 38920 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑌) ∈ (Base‘𝐾)) → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
18 | 1, 13, 15, 17 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
19 | 3, 4 | dihmeetcl 38922 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) ∈ ran 𝐼) |
20 | 1, 2, 7, 19 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑋 ∩ 𝑌) ∈ ran 𝐼) |
21 | 3, 4 | dihcnvid2 38850 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∩ 𝑌) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘(𝑋 ∩ 𝑌))) = (𝑋 ∩ 𝑌)) |
22 | 1, 20, 21 | syl2anc 588 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘(𝑋 ∩ 𝑌))) = (𝑋 ∩ 𝑌)) |
23 | 10, 18, 22 | 3eqtr4rd 2805 | . 2 ⊢ (𝜑 → (𝐼‘(◡𝐼‘(𝑋 ∩ 𝑌))) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
24 | 11, 3, 4 | dihcnvcl 38848 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∩ 𝑌) ∈ ran 𝐼) → (◡𝐼‘(𝑋 ∩ 𝑌)) ∈ (Base‘𝐾)) |
25 | 1, 20, 24 | syl2anc 588 | . . 3 ⊢ (𝜑 → (◡𝐼‘(𝑋 ∩ 𝑌)) ∈ (Base‘𝐾)) |
26 | 1 | simpld 499 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
27 | 26 | hllatd 36941 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
28 | 11, 16 | latmcl 17729 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑌) ∈ (Base‘𝐾)) → ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)) ∈ (Base‘𝐾)) |
29 | 27, 13, 15, 28 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)) ∈ (Base‘𝐾)) |
30 | 11, 3, 4 | dih11 38842 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐼‘(𝑋 ∩ 𝑌)) ∈ (Base‘𝐾) ∧ ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)) ∈ (Base‘𝐾)) → ((𝐼‘(◡𝐼‘(𝑋 ∩ 𝑌))) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) ↔ (◡𝐼‘(𝑋 ∩ 𝑌)) = ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
31 | 1, 25, 29, 30 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝐼‘(◡𝐼‘(𝑋 ∩ 𝑌))) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) ↔ (◡𝐼‘(𝑋 ∩ 𝑌)) = ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
32 | 23, 31 | mpbid 235 | 1 ⊢ (𝜑 → (◡𝐼‘(𝑋 ∩ 𝑌)) = ((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∩ cin 3858 ◡ccnv 5524 ran crn 5526 ‘cfv 6336 (class class class)co 7151 Basecbs 16542 meetcmee 17622 Latclat 17722 HLchlt 36927 LHypclh 37561 DIsoHcdih 38805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-riotaBAD 36530 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-tpos 7903 df-undef 7950 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-n0 11936 df-z 12022 df-uz 12284 df-fz 12941 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-sca 16640 df-vsca 16641 df-0g 16774 df-proset 17605 df-poset 17623 df-plt 17635 df-lub 17651 df-glb 17652 df-join 17653 df-meet 17654 df-p0 17716 df-p1 17717 df-lat 17723 df-clat 17785 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-submnd 18024 df-grp 18173 df-minusg 18174 df-sbg 18175 df-subg 18344 df-cntz 18515 df-lsm 18829 df-cmn 18976 df-abl 18977 df-mgp 19309 df-ur 19321 df-ring 19368 df-oppr 19445 df-dvdsr 19463 df-unit 19464 df-invr 19494 df-dvr 19505 df-drng 19573 df-lmod 19705 df-lss 19773 df-lsp 19813 df-lvec 19944 df-lsatoms 36553 df-oposet 36753 df-ol 36755 df-oml 36756 df-covers 36843 df-ats 36844 df-atl 36875 df-cvlat 36899 df-hlat 36928 df-llines 37075 df-lplanes 37076 df-lvols 37077 df-lines 37078 df-psubsp 37080 df-pmap 37081 df-padd 37373 df-lhyp 37565 df-laut 37566 df-ldil 37681 df-ltrn 37682 df-trl 37736 df-tendo 38332 df-edring 38334 df-disoa 38606 df-dvech 38656 df-dib 38716 df-dic 38750 df-dih 38806 |
This theorem is referenced by: dihoml4c 38953 |
Copyright terms: Public domain | W3C validator |