![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2v | Structured version Visualization version GIF version |
Description: Lemma for lclkr 41136. When the hypotheses of lclkrlem2u 41130 and lclkrlem2u 41130 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 41071, which requires the orthomodular law dihoml4 40980 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2q.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2q.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2v.j | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) |
lclkrlem2v.k | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) |
Ref | Expression |
---|---|
lclkrlem2v | ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lclkrlem2m.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
3 | lclkrlem2n.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
4 | lclkrlem2o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | lclkrlem2o.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lclkrlem2o.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlmod 40713 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | lclkrlem2m.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
9 | lclkrlem2m.p | . . . 4 ⊢ + = (+g‘𝐷) | |
10 | lclkrlem2m.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
11 | lclkrlem2m.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
12 | 2, 8, 9, 7, 10, 11 | ldualvaddcl 38732 | . . 3 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
13 | 1, 2, 3, 7, 12 | lkrssv 38698 | . 2 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) |
14 | lclkrlem2o.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | eqid 2725 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
16 | lclkrlem2o.a | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
17 | lclkrlem2n.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
18 | lclkrlem2m.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
19 | lclkrlem2m.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
20 | 1, 15, 17, 7, 18, 19 | lspprcl 20874 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
21 | eqid 2725 | . . . . . 6 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
22 | 4, 5, 1, 17, 21, 6, 18, 19 | dihprrn 41029 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
23 | 1, 15 | lssss 20832 | . . . . . . 7 ⊢ ((𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) |
24 | 20, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) |
25 | 4, 21, 5, 1, 14, 6, 24 | dochoccl 40972 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = (𝑁‘{𝑋, 𝑌}))) |
26 | 22, 25 | mpbid 231 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = (𝑁‘{𝑋, 𝑌})) |
27 | 4, 14, 5, 1, 15, 16, 6, 20, 26 | dochexmid 41071 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = 𝑉) |
28 | lclkrlem2m.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
29 | lclkrlem2m.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
30 | lclkrlem2m.q | . . . . 5 ⊢ × = (.r‘𝑆) | |
31 | lclkrlem2m.z | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
32 | lclkrlem2m.i | . . . . 5 ⊢ 𝐼 = (invr‘𝑆) | |
33 | lclkrlem2m.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
34 | 4, 5, 6 | dvhlvec 40712 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
35 | lclkrlem2v.j | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) | |
36 | lclkrlem2v.k | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) | |
37 | 1, 28, 29, 30, 31, 32, 33, 2, 8, 9, 18, 19, 10, 11, 17, 3, 34, 35, 36 | lclkrlem2n 41123 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
38 | 18 | snssd 4814 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
39 | 19 | snssd 4814 | . . . . . . 7 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
40 | 4, 5, 1, 14 | dochdmj1 40993 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → ( ⊥ ‘({𝑋} ∪ {𝑌})) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) |
41 | 6, 38, 39, 40 | syl3anc 1368 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘({𝑋} ∪ {𝑌})) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) |
42 | df-pr 4633 | . . . . . . . . 9 ⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | |
43 | 42 | fveq2i 6899 | . . . . . . . 8 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌})) |
44 | 43 | fveq2i 6899 | . . . . . . 7 ⊢ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ( ⊥ ‘(𝑁‘({𝑋} ∪ {𝑌}))) |
45 | 38, 39 | unssd 4184 | . . . . . . . 8 ⊢ (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ 𝑉) |
46 | 4, 5, 14, 1, 17, 6, 45 | dochocsp 40982 | . . . . . . 7 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘({𝑋} ∪ {𝑌}))) = ( ⊥ ‘({𝑋} ∪ {𝑌}))) |
47 | 44, 46 | eqtrid 2777 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ( ⊥ ‘({𝑋} ∪ {𝑌}))) |
48 | lclkrlem2q.le | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
49 | lclkrlem2q.lg | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
50 | 48, 49 | ineq12d 4211 | . . . . . 6 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) |
51 | 41, 47, 50 | 3eqtr4d 2775 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ((𝐿‘𝐸) ∩ (𝐿‘𝐺))) |
52 | 2, 3, 8, 9, 7, 10, 11 | lkrin 38766 | . . . . 5 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸 + 𝐺))) |
53 | 51, 52 | eqsstrd 4015 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊆ (𝐿‘(𝐸 + 𝐺))) |
54 | 15 | lsssssubg 20854 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
55 | 7, 54 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
56 | 55, 20 | sseldd 3977 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈)) |
57 | 4, 5, 1, 15, 14 | dochlss 40957 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈)) |
58 | 6, 24, 57 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈)) |
59 | 55, 58 | sseldd 3977 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈)) |
60 | 2, 3, 15 | lkrlss 38697 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
61 | 7, 12, 60 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
62 | 55, 61 | sseldd 3977 | . . . . 5 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (SubGrp‘𝑈)) |
63 | 16 | lsmlub 19631 | . . . . 5 ⊢ (((𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈) ∧ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (SubGrp‘𝑈)) → (((𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)) ∧ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊆ (𝐿‘(𝐸 + 𝐺))) ↔ ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊆ (𝐿‘(𝐸 + 𝐺)))) |
64 | 56, 59, 62, 63 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (((𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)) ∧ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊆ (𝐿‘(𝐸 + 𝐺))) ↔ ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊆ (𝐿‘(𝐸 + 𝐺)))) |
65 | 37, 53, 64 | mpbi2and 710 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊆ (𝐿‘(𝐸 + 𝐺))) |
66 | 27, 65 | eqsstrrd 4016 | . 2 ⊢ (𝜑 → 𝑉 ⊆ (𝐿‘(𝐸 + 𝐺))) |
67 | 13, 66 | eqssd 3994 | 1 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3942 ∩ cin 3943 ⊆ wss 3944 {csn 4630 {cpr 4632 ran crn 5679 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 Scalarcsca 17239 ·𝑠 cvsca 17240 0gc0g 17424 -gcsg 18900 SubGrpcsubg 19083 LSSumclsm 19601 invrcinvr 20338 LModclmod 20755 LSubSpclss 20827 LSpanclspn 20867 LFnlclfn 38659 LKerclk 38687 LDualcld 38725 HLchlt 38952 LHypclh 39587 DVecHcdvh 40681 DIsoHcdih 40831 ocHcoch 40950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-riotaBAD 38555 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-undef 8279 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-0g 17426 df-mre 17569 df-mrc 17570 df-acs 17572 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-cntz 19280 df-oppg 19309 df-lsm 19603 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-dvr 20352 df-drng 20638 df-lmod 20757 df-lss 20828 df-lsp 20868 df-lvec 21000 df-lsatoms 38578 df-lcv 38621 df-lfl 38660 df-lkr 38688 df-ldual 38726 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-llines 39101 df-lplanes 39102 df-lvols 39103 df-lines 39104 df-psubsp 39106 df-pmap 39107 df-padd 39399 df-lhyp 39591 df-laut 39592 df-ldil 39707 df-ltrn 39708 df-trl 39762 df-tgrp 40346 df-tendo 40358 df-edring 40360 df-dveca 40606 df-disoa 40632 df-dvech 40682 df-dib 40742 df-dic 40776 df-dih 40832 df-doch 40951 df-djh 40998 |
This theorem is referenced by: lclkrlem2w 41132 |
Copyright terms: Public domain | W3C validator |