Step | Hyp | Ref
| Expression |
1 | | lclkrlem2m.v |
. . 3
β’ π = (Baseβπ) |
2 | | lclkrlem2m.f |
. . 3
β’ πΉ = (LFnlβπ) |
3 | | lclkrlem2n.l |
. . 3
β’ πΏ = (LKerβπ) |
4 | | lclkrlem2o.h |
. . . 4
β’ π» = (LHypβπΎ) |
5 | | lclkrlem2o.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
6 | | lclkrlem2o.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
7 | 4, 5, 6 | dvhlmod 39969 |
. . 3
β’ (π β π β LMod) |
8 | | lclkrlem2m.d |
. . . 4
β’ π· = (LDualβπ) |
9 | | lclkrlem2m.p |
. . . 4
β’ + =
(+gβπ·) |
10 | | lclkrlem2m.e |
. . . 4
β’ (π β πΈ β πΉ) |
11 | | lclkrlem2m.g |
. . . 4
β’ (π β πΊ β πΉ) |
12 | 2, 8, 9, 7, 10, 11 | ldualvaddcl 37988 |
. . 3
β’ (π β (πΈ + πΊ) β πΉ) |
13 | 1, 2, 3, 7, 12 | lkrssv 37954 |
. 2
β’ (π β (πΏβ(πΈ + πΊ)) β π) |
14 | | lclkrlem2o.o |
. . . 4
β’ β₯ =
((ocHβπΎ)βπ) |
15 | | eqid 2732 |
. . . 4
β’
(LSubSpβπ) =
(LSubSpβπ) |
16 | | lclkrlem2o.a |
. . . 4
β’ β =
(LSSumβπ) |
17 | | lclkrlem2n.n |
. . . . 5
β’ π = (LSpanβπ) |
18 | | lclkrlem2m.x |
. . . . 5
β’ (π β π β π) |
19 | | lclkrlem2m.y |
. . . . 5
β’ (π β π β π) |
20 | 1, 15, 17, 7, 18, 19 | lspprcl 20581 |
. . . 4
β’ (π β (πβ{π, π}) β (LSubSpβπ)) |
21 | | eqid 2732 |
. . . . . 6
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
22 | 4, 5, 1, 17, 21, 6, 18, 19 | dihprrn 40285 |
. . . . 5
β’ (π β (πβ{π, π}) β ran ((DIsoHβπΎ)βπ)) |
23 | 1, 15 | lssss 20539 |
. . . . . . 7
β’ ((πβ{π, π}) β (LSubSpβπ) β (πβ{π, π}) β π) |
24 | 20, 23 | syl 17 |
. . . . . 6
β’ (π β (πβ{π, π}) β π) |
25 | 4, 21, 5, 1, 14, 6,
24 | dochoccl 40228 |
. . . . 5
β’ (π β ((πβ{π, π}) β ran ((DIsoHβπΎ)βπ) β ( β₯ β( β₯
β(πβ{π, π}))) = (πβ{π, π}))) |
26 | 22, 25 | mpbid 231 |
. . . 4
β’ (π β ( β₯ β( β₯
β(πβ{π, π}))) = (πβ{π, π})) |
27 | 4, 14, 5, 1, 15, 16, 6, 20, 26 | dochexmid 40327 |
. . 3
β’ (π β ((πβ{π, π}) β ( β₯
β(πβ{π, π}))) = π) |
28 | | lclkrlem2m.t |
. . . . 5
β’ Β· = (
Β·π βπ) |
29 | | lclkrlem2m.s |
. . . . 5
β’ π = (Scalarβπ) |
30 | | lclkrlem2m.q |
. . . . 5
β’ Γ =
(.rβπ) |
31 | | lclkrlem2m.z |
. . . . 5
β’ 0 =
(0gβπ) |
32 | | lclkrlem2m.i |
. . . . 5
β’ πΌ = (invrβπ) |
33 | | lclkrlem2m.m |
. . . . 5
β’ β =
(-gβπ) |
34 | 4, 5, 6 | dvhlvec 39968 |
. . . . 5
β’ (π β π β LVec) |
35 | | lclkrlem2v.j |
. . . . 5
β’ (π β ((πΈ + πΊ)βπ) = 0 ) |
36 | | lclkrlem2v.k |
. . . . 5
β’ (π β ((πΈ + πΊ)βπ) = 0 ) |
37 | 1, 28, 29, 30, 31, 32, 33, 2, 8, 9, 18, 19, 10, 11, 17, 3, 34, 35, 36 | lclkrlem2n 40379 |
. . . 4
β’ (π β (πβ{π, π}) β (πΏβ(πΈ + πΊ))) |
38 | 18 | snssd 4811 |
. . . . . . 7
β’ (π β {π} β π) |
39 | 19 | snssd 4811 |
. . . . . . 7
β’ (π β {π} β π) |
40 | 4, 5, 1, 14 | dochdmj1 40249 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ {π} β π β§ {π} β π) β ( β₯ β({π} βͺ {π})) = (( β₯ β{π}) β© ( β₯ β{π}))) |
41 | 6, 38, 39, 40 | syl3anc 1371 |
. . . . . 6
β’ (π β ( β₯ β({π} βͺ {π})) = (( β₯ β{π}) β© ( β₯ β{π}))) |
42 | | df-pr 4630 |
. . . . . . . . 9
β’ {π, π} = ({π} βͺ {π}) |
43 | 42 | fveq2i 6891 |
. . . . . . . 8
β’ (πβ{π, π}) = (πβ({π} βͺ {π})) |
44 | 43 | fveq2i 6891 |
. . . . . . 7
β’ ( β₯
β(πβ{π, π})) = ( β₯ β(πβ({π} βͺ {π}))) |
45 | 38, 39 | unssd 4185 |
. . . . . . . 8
β’ (π β ({π} βͺ {π}) β π) |
46 | 4, 5, 14, 1, 17, 6, 45 | dochocsp 40238 |
. . . . . . 7
β’ (π β ( β₯ β(πβ({π} βͺ {π}))) = ( β₯ β({π} βͺ {π}))) |
47 | 44, 46 | eqtrid 2784 |
. . . . . 6
β’ (π β ( β₯ β(πβ{π, π})) = ( β₯ β({π} βͺ {π}))) |
48 | | lclkrlem2q.le |
. . . . . . 7
β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
49 | | lclkrlem2q.lg |
. . . . . . 7
β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
50 | 48, 49 | ineq12d 4212 |
. . . . . 6
β’ (π β ((πΏβπΈ) β© (πΏβπΊ)) = (( β₯ β{π}) β© ( β₯ β{π}))) |
51 | 41, 47, 50 | 3eqtr4d 2782 |
. . . . 5
β’ (π β ( β₯ β(πβ{π, π})) = ((πΏβπΈ) β© (πΏβπΊ))) |
52 | 2, 3, 8, 9, 7, 10,
11 | lkrin 38022 |
. . . . 5
β’ (π β ((πΏβπΈ) β© (πΏβπΊ)) β (πΏβ(πΈ + πΊ))) |
53 | 51, 52 | eqsstrd 4019 |
. . . 4
β’ (π β ( β₯ β(πβ{π, π})) β (πΏβ(πΈ + πΊ))) |
54 | 15 | lsssssubg 20561 |
. . . . . . 7
β’ (π β LMod β
(LSubSpβπ) β
(SubGrpβπ)) |
55 | 7, 54 | syl 17 |
. . . . . 6
β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
56 | 55, 20 | sseldd 3982 |
. . . . 5
β’ (π β (πβ{π, π}) β (SubGrpβπ)) |
57 | 4, 5, 1, 15, 14 | dochlss 40213 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (πβ{π, π}) β π) β ( β₯ β(πβ{π, π})) β (LSubSpβπ)) |
58 | 6, 24, 57 | syl2anc 584 |
. . . . . 6
β’ (π β ( β₯ β(πβ{π, π})) β (LSubSpβπ)) |
59 | 55, 58 | sseldd 3982 |
. . . . 5
β’ (π β ( β₯ β(πβ{π, π})) β (SubGrpβπ)) |
60 | 2, 3, 15 | lkrlss 37953 |
. . . . . . 7
β’ ((π β LMod β§ (πΈ + πΊ) β πΉ) β (πΏβ(πΈ + πΊ)) β (LSubSpβπ)) |
61 | 7, 12, 60 | syl2anc 584 |
. . . . . 6
β’ (π β (πΏβ(πΈ + πΊ)) β (LSubSpβπ)) |
62 | 55, 61 | sseldd 3982 |
. . . . 5
β’ (π β (πΏβ(πΈ + πΊ)) β (SubGrpβπ)) |
63 | 16 | lsmlub 19526 |
. . . . 5
β’ (((πβ{π, π}) β (SubGrpβπ) β§ ( β₯ β(πβ{π, π})) β (SubGrpβπ) β§ (πΏβ(πΈ + πΊ)) β (SubGrpβπ)) β (((πβ{π, π}) β (πΏβ(πΈ + πΊ)) β§ ( β₯ β(πβ{π, π})) β (πΏβ(πΈ + πΊ))) β ((πβ{π, π}) β ( β₯
β(πβ{π, π}))) β (πΏβ(πΈ + πΊ)))) |
64 | 56, 59, 62, 63 | syl3anc 1371 |
. . . 4
β’ (π β (((πβ{π, π}) β (πΏβ(πΈ + πΊ)) β§ ( β₯ β(πβ{π, π})) β (πΏβ(πΈ + πΊ))) β ((πβ{π, π}) β ( β₯
β(πβ{π, π}))) β (πΏβ(πΈ + πΊ)))) |
65 | 37, 53, 64 | mpbi2and 710 |
. . 3
β’ (π β ((πβ{π, π}) β ( β₯
β(πβ{π, π}))) β (πΏβ(πΈ + πΊ))) |
66 | 27, 65 | eqsstrrd 4020 |
. 2
β’ (π β π β (πΏβ(πΈ + πΊ))) |
67 | 13, 66 | eqssd 3998 |
1
β’ (π β (πΏβ(πΈ + πΊ)) = π) |