![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2v | Structured version Visualization version GIF version |
Description: Lemma for lclkr 38114. When the hypotheses of lclkrlem2u 38108 and lclkrlem2u 38108 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 38049, which requires the orthomodular law dihoml4 37958 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2q.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2q.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2v.j | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) |
lclkrlem2v.k | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) |
Ref | Expression |
---|---|
lclkrlem2v | ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lclkrlem2m.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
3 | lclkrlem2n.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
4 | lclkrlem2o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | lclkrlem2o.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lclkrlem2o.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlmod 37691 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | lclkrlem2m.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
9 | lclkrlem2m.p | . . . 4 ⊢ + = (+g‘𝐷) | |
10 | lclkrlem2m.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
11 | lclkrlem2m.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
12 | 2, 8, 9, 7, 10, 11 | ldualvaddcl 35711 | . . 3 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
13 | 1, 2, 3, 7, 12 | lkrssv 35677 | . 2 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) |
14 | lclkrlem2o.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | eqid 2778 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
16 | lclkrlem2o.a | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
17 | lclkrlem2n.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
18 | lclkrlem2m.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
19 | lclkrlem2m.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
20 | 1, 15, 17, 7, 18, 19 | lspprcl 19475 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
21 | eqid 2778 | . . . . . 6 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
22 | 4, 5, 1, 17, 21, 6, 18, 19 | dihprrn 38007 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
23 | 1, 15 | lssss 19433 | . . . . . . 7 ⊢ ((𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) |
24 | 20, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) |
25 | 4, 21, 5, 1, 14, 6, 24 | dochoccl 37950 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = (𝑁‘{𝑋, 𝑌}))) |
26 | 22, 25 | mpbid 224 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = (𝑁‘{𝑋, 𝑌})) |
27 | 4, 14, 5, 1, 15, 16, 6, 20, 26 | dochexmid 38049 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = 𝑉) |
28 | lclkrlem2m.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
29 | lclkrlem2m.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
30 | lclkrlem2m.q | . . . . 5 ⊢ × = (.r‘𝑆) | |
31 | lclkrlem2m.z | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
32 | lclkrlem2m.i | . . . . 5 ⊢ 𝐼 = (invr‘𝑆) | |
33 | lclkrlem2m.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
34 | 4, 5, 6 | dvhlvec 37690 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
35 | lclkrlem2v.j | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) | |
36 | lclkrlem2v.k | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) | |
37 | 1, 28, 29, 30, 31, 32, 33, 2, 8, 9, 18, 19, 10, 11, 17, 3, 34, 35, 36 | lclkrlem2n 38101 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
38 | 18 | snssd 4617 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
39 | 19 | snssd 4617 | . . . . . . 7 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
40 | 4, 5, 1, 14 | dochdmj1 37971 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → ( ⊥ ‘({𝑋} ∪ {𝑌})) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) |
41 | 6, 38, 39, 40 | syl3anc 1351 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘({𝑋} ∪ {𝑌})) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) |
42 | df-pr 4445 | . . . . . . . . 9 ⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | |
43 | 42 | fveq2i 6504 | . . . . . . . 8 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌})) |
44 | 43 | fveq2i 6504 | . . . . . . 7 ⊢ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ( ⊥ ‘(𝑁‘({𝑋} ∪ {𝑌}))) |
45 | 38, 39 | unssd 4052 | . . . . . . . 8 ⊢ (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ 𝑉) |
46 | 4, 5, 14, 1, 17, 6, 45 | dochocsp 37960 | . . . . . . 7 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘({𝑋} ∪ {𝑌}))) = ( ⊥ ‘({𝑋} ∪ {𝑌}))) |
47 | 44, 46 | syl5eq 2826 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ( ⊥ ‘({𝑋} ∪ {𝑌}))) |
48 | lclkrlem2q.le | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
49 | lclkrlem2q.lg | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
50 | 48, 49 | ineq12d 4079 | . . . . . 6 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) |
51 | 41, 47, 50 | 3eqtr4d 2824 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ((𝐿‘𝐸) ∩ (𝐿‘𝐺))) |
52 | 2, 3, 8, 9, 7, 10, 11 | lkrin 35745 | . . . . 5 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸 + 𝐺))) |
53 | 51, 52 | eqsstrd 3897 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊆ (𝐿‘(𝐸 + 𝐺))) |
54 | 15 | lsssssubg 19455 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
55 | 7, 54 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
56 | 55, 20 | sseldd 3861 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈)) |
57 | 4, 5, 1, 15, 14 | dochlss 37935 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈)) |
58 | 6, 24, 57 | syl2anc 576 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈)) |
59 | 55, 58 | sseldd 3861 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈)) |
60 | 2, 3, 15 | lkrlss 35676 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
61 | 7, 12, 60 | syl2anc 576 | . . . . . 6 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
62 | 55, 61 | sseldd 3861 | . . . . 5 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (SubGrp‘𝑈)) |
63 | 16 | lsmlub 18552 | . . . . 5 ⊢ (((𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈) ∧ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (SubGrp‘𝑈)) → (((𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)) ∧ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊆ (𝐿‘(𝐸 + 𝐺))) ↔ ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊆ (𝐿‘(𝐸 + 𝐺)))) |
64 | 56, 59, 62, 63 | syl3anc 1351 | . . . 4 ⊢ (𝜑 → (((𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)) ∧ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊆ (𝐿‘(𝐸 + 𝐺))) ↔ ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊆ (𝐿‘(𝐸 + 𝐺)))) |
65 | 37, 53, 64 | mpbi2and 699 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ⊕ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊆ (𝐿‘(𝐸 + 𝐺))) |
66 | 27, 65 | eqsstr3d 3898 | . 2 ⊢ (𝜑 → 𝑉 ⊆ (𝐿‘(𝐸 + 𝐺))) |
67 | 13, 66 | eqssd 3877 | 1 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∪ cun 3829 ∩ cin 3830 ⊆ wss 3831 {csn 4442 {cpr 4444 ran crn 5409 ‘cfv 6190 (class class class)co 6978 Basecbs 16342 +gcplusg 16424 .rcmulr 16425 Scalarcsca 16427 ·𝑠 cvsca 16428 0gc0g 16572 -gcsg 17896 SubGrpcsubg 18060 LSSumclsm 18523 invrcinvr 19147 LModclmod 19359 LSubSpclss 19428 LSpanclspn 19468 LFnlclfn 35638 LKerclk 35666 LDualcld 35704 HLchlt 35931 LHypclh 36565 DVecHcdvh 37659 DIsoHcdih 37809 ocHcoch 37928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 ax-riotaBAD 35534 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-iin 4796 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-of 7229 df-om 7399 df-1st 7503 df-2nd 7504 df-tpos 7697 df-undef 7744 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-1o 7907 df-oadd 7911 df-er 8091 df-map 8210 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-2 11506 df-3 11507 df-4 11508 df-5 11509 df-6 11510 df-n0 11711 df-z 11797 df-uz 12062 df-fz 12712 df-struct 16344 df-ndx 16345 df-slot 16346 df-base 16348 df-sets 16349 df-ress 16350 df-plusg 16437 df-mulr 16438 df-sca 16440 df-vsca 16441 df-0g 16574 df-mre 16718 df-mrc 16719 df-acs 16721 df-proset 17399 df-poset 17417 df-plt 17429 df-lub 17445 df-glb 17446 df-join 17447 df-meet 17448 df-p0 17510 df-p1 17511 df-lat 17517 df-clat 17579 df-mgm 17713 df-sgrp 17755 df-mnd 17766 df-submnd 17807 df-grp 17897 df-minusg 17898 df-sbg 17899 df-subg 18063 df-cntz 18221 df-oppg 18248 df-lsm 18525 df-cmn 18671 df-abl 18672 df-mgp 18966 df-ur 18978 df-ring 19025 df-oppr 19099 df-dvdsr 19117 df-unit 19118 df-invr 19148 df-dvr 19159 df-drng 19230 df-lmod 19361 df-lss 19429 df-lsp 19469 df-lvec 19600 df-lsatoms 35557 df-lcv 35600 df-lfl 35639 df-lkr 35667 df-ldual 35705 df-oposet 35757 df-ol 35759 df-oml 35760 df-covers 35847 df-ats 35848 df-atl 35879 df-cvlat 35903 df-hlat 35932 df-llines 36079 df-lplanes 36080 df-lvols 36081 df-lines 36082 df-psubsp 36084 df-pmap 36085 df-padd 36377 df-lhyp 36569 df-laut 36570 df-ldil 36685 df-ltrn 36686 df-trl 36740 df-tgrp 37324 df-tendo 37336 df-edring 37338 df-dveca 37584 df-disoa 37610 df-dvech 37660 df-dib 37720 df-dic 37754 df-dih 37810 df-doch 37929 df-djh 37976 |
This theorem is referenced by: lclkrlem2w 38110 |
Copyright terms: Public domain | W3C validator |