MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip1i Structured version   Visualization version   GIF version

Theorem ip1i 28237
Description: Equation 6.47 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
Assertion
Ref Expression
ip1i (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))

Proof of Theorem ip1i
StepHypRef Expression
1 ip1i.1 . 2 𝑋 = (BaseSet‘𝑈)
2 ip1i.2 . 2 𝐺 = ( +𝑣𝑈)
3 ip1i.4 . 2 𝑆 = ( ·𝑠OLD𝑈)
4 ip1i.7 . 2 𝑃 = (·𝑖OLD𝑈)
5 ip1i.9 . 2 𝑈 ∈ CPreHilOLD
6 ip1i.a . 2 𝐴𝑋
7 ip1i.b . 2 𝐵𝑋
8 ip1i.c . 2 𝐶𝑋
9 eqid 2825 . 2 (normCV𝑈) = (normCV𝑈)
10 ax-1cn 10310 . 2 1 ∈ ℂ
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ip1ilem 28236 1 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  cfv 6123  (class class class)co 6905  1c1 10253   + caddc 10255   · cmul 10257  -cneg 10586  2c2 11406   +𝑣 cpv 27995  BaseSetcba 27996   ·𝑠OLD cns 27997  normCVcnmcv 28000  ·𝑖OLDcdip 28110  CPreHilOLDccphlo 28222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-grpo 27903  df-ablo 27955  df-vc 27969  df-nv 28002  df-va 28005  df-ba 28006  df-sm 28007  df-0v 28008  df-nmcv 28010  df-dip 28111  df-ph 28223
This theorem is referenced by:  ip2i  28238  ipdirilem  28239
  Copyright terms: Public domain W3C validator