![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip1i | Structured version Visualization version GIF version |
Description: Equation 6.47 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ip1i.a | ⊢ 𝐴 ∈ 𝑋 |
ip1i.b | ⊢ 𝐵 ∈ 𝑋 |
ip1i.c | ⊢ 𝐶 ∈ 𝑋 |
Ref | Expression |
---|---|
ip1i | ⊢ (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | ip1i.2 | . 2 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | ip1i.4 | . 2 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | ip1i.7 | . 2 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
5 | ip1i.9 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
6 | ip1i.a | . 2 ⊢ 𝐴 ∈ 𝑋 | |
7 | ip1i.b | . 2 ⊢ 𝐵 ∈ 𝑋 | |
8 | ip1i.c | . 2 ⊢ 𝐶 ∈ 𝑋 | |
9 | eqid 2825 | . 2 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
10 | ax-1cn 10310 | . 2 ⊢ 1 ∈ ℂ | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ip1ilem 28236 | 1 ⊢ (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 1c1 10253 + caddc 10255 · cmul 10257 -cneg 10586 2c2 11406 +𝑣 cpv 27995 BaseSetcba 27996 ·𝑠OLD cns 27997 normCVcnmcv 28000 ·𝑖OLDcdip 28110 CPreHilOLDccphlo 28222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-fz 12620 df-fzo 12761 df-seq 13096 df-exp 13155 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-clim 14596 df-sum 14794 df-grpo 27903 df-ablo 27955 df-vc 27969 df-nv 28002 df-va 28005 df-ba 28006 df-sm 28007 df-0v 28008 df-nmcv 28010 df-dip 28111 df-ph 28223 |
This theorem is referenced by: ip2i 28238 ipdirilem 28239 |
Copyright terms: Public domain | W3C validator |