| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmfledvds | Structured version Visualization version GIF version | ||
| Description: A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcmfledvds | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾) → (lcm‘𝑍) ≤ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfn0val 16593 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) = inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < )) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → (lcm‘𝑍) = inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < )) |
| 3 | ssrab2 4043 | . . . . . 6 ⊢ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ⊆ ℕ | |
| 4 | nnuz 12836 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | 3, 4 | sseqtri 3995 | . . . . 5 ⊢ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ⊆ (ℤ≥‘1) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) | |
| 7 | breq2 5111 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝐾)) | |
| 8 | 7 | ralbidv 3156 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
| 9 | 8 | elrab 3659 | . . . . . 6 ⊢ (𝐾 ∈ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ↔ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
| 10 | 6, 9 | sylibr 234 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → 𝐾 ∈ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}) |
| 11 | infssuzle 12890 | . . . . 5 ⊢ (({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ⊆ (ℤ≥‘1) ∧ 𝐾 ∈ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}) → inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < ) ≤ 𝐾) | |
| 12 | 5, 10, 11 | sylancr 587 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < ) ≤ 𝐾) |
| 13 | 12 | 3ad2antl1 1186 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < ) ≤ 𝐾) |
| 14 | 2, 13 | eqbrtrd 5129 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → (lcm‘𝑍) ≤ 𝐾) |
| 15 | 14 | ex 412 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾) → (lcm‘𝑍) ≤ 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 {crab 3405 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 Fincfn 8918 infcinf 9392 ℝcr 11067 0cc0 11068 1c1 11069 < clt 11208 ≤ cle 11209 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 ∥ cdvds 16222 lcmclcmf 16559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 df-dvds 16223 df-lcmf 16561 |
| This theorem is referenced by: lcmf 16603 lcmflefac 16618 |
| Copyright terms: Public domain | W3C validator |