![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfledvds | Structured version Visualization version GIF version |
Description: A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmfledvds | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾) → (lcm‘𝑍) ≤ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfn0val 16602 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) = inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < )) | |
2 | 1 | adantr 479 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → (lcm‘𝑍) = inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < )) |
3 | ssrab2 4073 | . . . . . 6 ⊢ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ⊆ ℕ | |
4 | nnuz 12903 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
5 | 3, 4 | sseqtri 4013 | . . . . 5 ⊢ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ⊆ (ℤ≥‘1) |
6 | simpr 483 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) | |
7 | breq2 5153 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝐾)) | |
8 | 7 | ralbidv 3167 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
9 | 8 | elrab 3679 | . . . . . 6 ⊢ (𝐾 ∈ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ↔ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
10 | 6, 9 | sylibr 233 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → 𝐾 ∈ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}) |
11 | infssuzle 12953 | . . . . 5 ⊢ (({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘} ⊆ (ℤ≥‘1) ∧ 𝐾 ∈ {𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}) → inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < ) ≤ 𝐾) | |
12 | 5, 10, 11 | sylancr 585 | . . . 4 ⊢ ((𝑍 ⊆ ℤ ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < ) ≤ 𝐾) |
13 | 12 | 3ad2antl1 1182 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → inf({𝑘 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘}, ℝ, < ) ≤ 𝐾) |
14 | 2, 13 | eqbrtrd 5171 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) ∧ (𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) → (lcm‘𝑍) ≤ 𝐾) |
15 | 14 | ex 411 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾) → (lcm‘𝑍) ≤ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∉ wnel 3035 ∀wral 3050 {crab 3418 ⊆ wss 3944 class class class wbr 5149 ‘cfv 6549 Fincfn 8964 infcinf 9471 ℝcr 11144 0cc0 11145 1c1 11146 < clt 11285 ≤ cle 11286 ℕcn 12250 ℤcz 12596 ℤ≥cuz 12860 ∥ cdvds 16239 lcmclcmf 16568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-inf 9473 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-seq 14008 df-exp 14068 df-hash 14331 df-cj 15087 df-re 15088 df-im 15089 df-sqrt 15223 df-abs 15224 df-clim 15473 df-prod 15891 df-dvds 16240 df-lcmf 16570 |
This theorem is referenced by: lcmf 16612 lcmflefac 16627 |
Copyright terms: Public domain | W3C validator |