![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem30 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41086. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | β’ π» = (LHypβπΎ) |
lcfrlem17.o | β’ β₯ = ((ocHβπΎ)βπ) |
lcfrlem17.u | β’ π = ((DVecHβπΎ)βπ) |
lcfrlem17.v | β’ π = (Baseβπ) |
lcfrlem17.p | β’ + = (+gβπ) |
lcfrlem17.z | β’ 0 = (0gβπ) |
lcfrlem17.n | β’ π = (LSpanβπ) |
lcfrlem17.a | β’ π΄ = (LSAtomsβπ) |
lcfrlem17.k | β’ (π β (πΎ β HL β§ π β π»)) |
lcfrlem17.x | β’ (π β π β (π β { 0 })) |
lcfrlem17.y | β’ (π β π β (π β { 0 })) |
lcfrlem17.ne | β’ (π β (πβ{π}) β (πβ{π})) |
lcfrlem22.b | β’ π΅ = ((πβ{π, π}) β© ( β₯ β{(π + π)})) |
lcfrlem24.t | β’ Β· = ( Β·π βπ) |
lcfrlem24.s | β’ π = (Scalarβπ) |
lcfrlem24.q | β’ π = (0gβπ) |
lcfrlem24.r | β’ π = (Baseβπ) |
lcfrlem24.j | β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
lcfrlem24.ib | β’ (π β πΌ β π΅) |
lcfrlem24.l | β’ πΏ = (LKerβπ) |
lcfrlem25.d | β’ π· = (LDualβπ) |
lcfrlem28.jn | β’ (π β ((π½βπ)βπΌ) β π) |
lcfrlem29.i | β’ πΉ = (invrβπ) |
lcfrlem30.m | β’ β = (-gβπ·) |
lcfrlem30.c | β’ πΆ = ((π½βπ) β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π βπ·)(π½βπ))) |
Ref | Expression |
---|---|
lcfrlem30 | β’ (π β πΆ β (LFnlβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem30.c | . 2 β’ πΆ = ((π½βπ) β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π βπ·)(π½βπ))) | |
2 | eqid 2725 | . . 3 β’ (LFnlβπ) = (LFnlβπ) | |
3 | lcfrlem25.d | . . 3 β’ π· = (LDualβπ) | |
4 | lcfrlem30.m | . . 3 β’ β = (-gβπ·) | |
5 | lcfrlem17.h | . . . 4 β’ π» = (LHypβπΎ) | |
6 | lcfrlem17.u | . . . 4 β’ π = ((DVecHβπΎ)βπ) | |
7 | lcfrlem17.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
8 | 5, 6, 7 | dvhlmod 40611 | . . 3 β’ (π β π β LMod) |
9 | lcfrlem17.o | . . . 4 β’ β₯ = ((ocHβπΎ)βπ) | |
10 | lcfrlem17.v | . . . 4 β’ π = (Baseβπ) | |
11 | lcfrlem17.p | . . . 4 β’ + = (+gβπ) | |
12 | lcfrlem24.t | . . . 4 β’ Β· = ( Β·π βπ) | |
13 | lcfrlem24.s | . . . 4 β’ π = (Scalarβπ) | |
14 | lcfrlem24.r | . . . 4 β’ π = (Baseβπ) | |
15 | lcfrlem17.z | . . . 4 β’ 0 = (0gβπ) | |
16 | lcfrlem24.l | . . . 4 β’ πΏ = (LKerβπ) | |
17 | eqid 2725 | . . . 4 β’ (0gβπ·) = (0gβπ·) | |
18 | eqid 2725 | . . . 4 β’ {π β (LFnlβπ) β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} = {π β (LFnlβπ) β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} | |
19 | lcfrlem24.j | . . . 4 β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) | |
20 | lcfrlem17.x | . . . 4 β’ (π β π β (π β { 0 })) | |
21 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 20 | lcfrlem10 41053 | . . 3 β’ (π β (π½βπ) β (LFnlβπ)) |
22 | eqid 2725 | . . . 4 β’ ( Β·π βπ·) = ( Β·π βπ·) | |
23 | lcfrlem17.n | . . . . 5 β’ π = (LSpanβπ) | |
24 | lcfrlem17.a | . . . . 5 β’ π΄ = (LSAtomsβπ) | |
25 | lcfrlem17.y | . . . . 5 β’ (π β π β (π β { 0 })) | |
26 | lcfrlem17.ne | . . . . 5 β’ (π β (πβ{π}) β (πβ{π})) | |
27 | lcfrlem22.b | . . . . 5 β’ π΅ = ((πβ{π, π}) β© ( β₯ β{(π + π)})) | |
28 | lcfrlem24.q | . . . . 5 β’ π = (0gβπ) | |
29 | lcfrlem24.ib | . . . . 5 β’ (π β πΌ β π΅) | |
30 | lcfrlem28.jn | . . . . 5 β’ (π β ((π½βπ)βπΌ) β π) | |
31 | lcfrlem29.i | . . . . 5 β’ πΉ = (invrβπ) | |
32 | 5, 9, 6, 10, 11, 15, 23, 24, 7, 20, 25, 26, 27, 12, 13, 28, 14, 19, 29, 16, 3, 30, 31 | lcfrlem29 41072 | . . . 4 β’ (π β ((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ)) β π ) |
33 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 25 | lcfrlem10 41053 | . . . 4 β’ (π β (π½βπ) β (LFnlβπ)) |
34 | 2, 13, 14, 3, 22, 8, 32, 33 | ldualvscl 38639 | . . 3 β’ (π β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π βπ·)(π½βπ)) β (LFnlβπ)) |
35 | 2, 3, 4, 8, 21, 34 | ldualvsubcl 38656 | . 2 β’ (π β ((π½βπ) β (((πΉβ((π½βπ)βπΌ))(.rβπ)((π½βπ)βπΌ))( Β·π βπ·)(π½βπ))) β (LFnlβπ)) |
36 | 1, 35 | eqeltrid 2829 | 1 β’ (π β πΆ β (LFnlβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βwrex 3060 {crab 3419 β cdif 3936 β© cin 3938 {csn 4622 {cpr 4624 β¦ cmpt 5224 βcfv 6541 β©crio 7369 (class class class)co 7414 Basecbs 17177 +gcplusg 17230 .rcmulr 17231 Scalarcsca 17233 Β·π cvsca 17234 0gc0g 17418 -gcsg 18894 invrcinvr 20328 LSpanclspn 20857 LSAtomsclsa 38474 LFnlclfn 38557 LKerclk 38585 LDualcld 38623 HLchlt 38850 LHypclh 39485 DVecHcdvh 40579 ocHcoch 40848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38453 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-tpos 8228 df-undef 8275 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-0g 17420 df-mre 17563 df-mrc 17564 df-acs 17566 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cntz 19270 df-oppg 19299 df-lsm 19593 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 df-lsatoms 38476 df-lshyp 38477 df-lcv 38519 df-lfl 38558 df-ldual 38624 df-oposet 38676 df-ol 38678 df-oml 38679 df-covers 38766 df-ats 38767 df-atl 38798 df-cvlat 38822 df-hlat 38851 df-llines 38999 df-lplanes 39000 df-lvols 39001 df-lines 39002 df-psubsp 39004 df-pmap 39005 df-padd 39297 df-lhyp 39489 df-laut 39490 df-ldil 39605 df-ltrn 39606 df-trl 39660 df-tgrp 40244 df-tendo 40256 df-edring 40258 df-dveca 40504 df-disoa 40530 df-dvech 40580 df-dib 40640 df-dic 40674 df-dih 40730 df-doch 40849 df-djh 40896 |
This theorem is referenced by: lcfrlem35 41078 lcfrlem36 41079 |
Copyright terms: Public domain | W3C validator |