Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem30 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39362. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
Ref | Expression |
---|---|
lcfrlem30 | ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem30.c | . 2 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
2 | eqid 2738 | . . 3 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
3 | lcfrlem25.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
4 | lcfrlem30.m | . . 3 ⊢ − = (-g‘𝐷) | |
5 | lcfrlem17.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | lcfrlem17.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | lcfrlem17.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 5, 6, 7 | dvhlmod 38887 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
9 | lcfrlem17.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
10 | lcfrlem17.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
11 | lcfrlem17.p | . . . 4 ⊢ + = (+g‘𝑈) | |
12 | lcfrlem24.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
13 | lcfrlem24.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
14 | lcfrlem24.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
15 | lcfrlem17.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
16 | lcfrlem24.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
17 | eqid 2738 | . . . 4 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
18 | eqid 2738 | . . . 4 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
19 | lcfrlem24.j | . . . 4 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
20 | lcfrlem17.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
21 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 20 | lcfrlem10 39329 | . . 3 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (LFnl‘𝑈)) |
22 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
23 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
24 | lcfrlem17.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
25 | lcfrlem17.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
26 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
27 | lcfrlem22.b | . . . . 5 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
28 | lcfrlem24.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
29 | lcfrlem24.ib | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
30 | lcfrlem28.jn | . . . . 5 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
31 | lcfrlem29.i | . . . . 5 ⊢ 𝐹 = (invr‘𝑆) | |
32 | 5, 9, 6, 10, 11, 15, 23, 24, 7, 20, 25, 26, 27, 12, 13, 28, 14, 19, 29, 16, 3, 30, 31 | lcfrlem29 39348 | . . . 4 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) |
33 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 25 | lcfrlem10 39329 | . . . 4 ⊢ (𝜑 → (𝐽‘𝑌) ∈ (LFnl‘𝑈)) |
34 | 2, 13, 14, 3, 22, 8, 32, 33 | ldualvscl 36916 | . . 3 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) ∈ (LFnl‘𝑈)) |
35 | 2, 3, 4, 8, 21, 34 | ldualvsubcl 36933 | . 2 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ∈ (LFnl‘𝑈)) |
36 | 1, 35 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∃wrex 3063 {crab 3066 ∖ cdif 3877 ∩ cin 3879 {csn 4555 {cpr 4557 ↦ cmpt 5149 ‘cfv 6397 ℩crio 7187 (class class class)co 7231 Basecbs 16784 +gcplusg 16826 .rcmulr 16827 Scalarcsca 16829 ·𝑠 cvsca 16830 0gc0g 16968 -gcsg 18391 invrcinvr 19713 LSpanclspn 20032 LSAtomsclsa 36751 LFnlclfn 36834 LKerclk 36862 LDualcld 36900 HLchlt 37127 LHypclh 37761 DVecHcdvh 38855 ocHcoch 39124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-riotaBAD 36730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-of 7487 df-om 7663 df-1st 7779 df-2nd 7780 df-tpos 7988 df-undef 8035 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-mulr 16840 df-sca 16842 df-vsca 16843 df-0g 16970 df-mre 17113 df-mrc 17114 df-acs 17116 df-proset 17826 df-poset 17844 df-plt 17860 df-lub 17876 df-glb 17877 df-join 17878 df-meet 17879 df-p0 17955 df-p1 17956 df-lat 17962 df-clat 18029 df-mgm 18138 df-sgrp 18187 df-mnd 18198 df-submnd 18243 df-grp 18392 df-minusg 18393 df-sbg 18394 df-subg 18564 df-cntz 18735 df-oppg 18762 df-lsm 19049 df-cmn 19196 df-abl 19197 df-mgp 19529 df-ur 19541 df-ring 19588 df-oppr 19665 df-dvdsr 19683 df-unit 19684 df-invr 19714 df-dvr 19725 df-drng 19793 df-lmod 19925 df-lss 19993 df-lsp 20033 df-lvec 20164 df-lsatoms 36753 df-lshyp 36754 df-lcv 36796 df-lfl 36835 df-ldual 36901 df-oposet 36953 df-ol 36955 df-oml 36956 df-covers 37043 df-ats 37044 df-atl 37075 df-cvlat 37099 df-hlat 37128 df-llines 37275 df-lplanes 37276 df-lvols 37277 df-lines 37278 df-psubsp 37280 df-pmap 37281 df-padd 37573 df-lhyp 37765 df-laut 37766 df-ldil 37881 df-ltrn 37882 df-trl 37936 df-tgrp 38520 df-tendo 38532 df-edring 38534 df-dveca 38780 df-disoa 38806 df-dvech 38856 df-dib 38916 df-dic 38950 df-dih 39006 df-doch 39125 df-djh 39172 |
This theorem is referenced by: lcfrlem35 39354 lcfrlem36 39355 |
Copyright terms: Public domain | W3C validator |