Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem30 Structured version   Visualization version   GIF version

Theorem lcfrlem30 39349
Description: Lemma for lcfr 39362. (Contributed by NM, 6-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
Assertion
Ref Expression
lcfrlem30 (𝜑𝐶 ∈ (LFnl‘𝑈))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   (𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem30
StepHypRef Expression
1 lcfrlem30.c . 2 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
2 eqid 2738 . . 3 (LFnl‘𝑈) = (LFnl‘𝑈)
3 lcfrlem25.d . . 3 𝐷 = (LDual‘𝑈)
4 lcfrlem30.m . . 3 = (-g𝐷)
5 lcfrlem17.h . . . 4 𝐻 = (LHyp‘𝐾)
6 lcfrlem17.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
85, 6, 7dvhlmod 38887 . . 3 (𝜑𝑈 ∈ LMod)
9 lcfrlem17.o . . . 4 = ((ocH‘𝐾)‘𝑊)
10 lcfrlem17.v . . . 4 𝑉 = (Base‘𝑈)
11 lcfrlem17.p . . . 4 + = (+g𝑈)
12 lcfrlem24.t . . . 4 · = ( ·𝑠𝑈)
13 lcfrlem24.s . . . 4 𝑆 = (Scalar‘𝑈)
14 lcfrlem24.r . . . 4 𝑅 = (Base‘𝑆)
15 lcfrlem17.z . . . 4 0 = (0g𝑈)
16 lcfrlem24.l . . . 4 𝐿 = (LKer‘𝑈)
17 eqid 2738 . . . 4 (0g𝐷) = (0g𝐷)
18 eqid 2738 . . . 4 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
19 lcfrlem24.j . . . 4 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
20 lcfrlem17.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
215, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 20lcfrlem10 39329 . . 3 (𝜑 → (𝐽𝑋) ∈ (LFnl‘𝑈))
22 eqid 2738 . . . 4 ( ·𝑠𝐷) = ( ·𝑠𝐷)
23 lcfrlem17.n . . . . 5 𝑁 = (LSpan‘𝑈)
24 lcfrlem17.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
25 lcfrlem17.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
26 lcfrlem17.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
27 lcfrlem22.b . . . . 5 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
28 lcfrlem24.q . . . . 5 𝑄 = (0g𝑆)
29 lcfrlem24.ib . . . . 5 (𝜑𝐼𝐵)
30 lcfrlem28.jn . . . . 5 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
31 lcfrlem29.i . . . . 5 𝐹 = (invr𝑆)
325, 9, 6, 10, 11, 15, 23, 24, 7, 20, 25, 26, 27, 12, 13, 28, 14, 19, 29, 16, 3, 30, 31lcfrlem29 39348 . . . 4 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
335, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 25lcfrlem10 39329 . . . 4 (𝜑 → (𝐽𝑌) ∈ (LFnl‘𝑈))
342, 13, 14, 3, 22, 8, 32, 33ldualvscl 36916 . . 3 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ (LFnl‘𝑈))
352, 3, 4, 8, 21, 34ldualvsubcl 36933 . 2 (𝜑 → ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) ∈ (LFnl‘𝑈))
361, 35eqeltrid 2843 1 (𝜑𝐶 ∈ (LFnl‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  wne 2941  wrex 3063  {crab 3066  cdif 3877  cin 3879  {csn 4555  {cpr 4557  cmpt 5149  cfv 6397  crio 7187  (class class class)co 7231  Basecbs 16784  +gcplusg 16826  .rcmulr 16827  Scalarcsca 16829   ·𝑠 cvsca 16830  0gc0g 16968  -gcsg 18391  invrcinvr 19713  LSpanclspn 20032  LSAtomsclsa 36751  LFnlclfn 36834  LKerclk 36862  LDualcld 36900  HLchlt 37127  LHypclh 37761  DVecHcdvh 38855  ocHcoch 39124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-riotaBAD 36730
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-iin 4921  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-of 7487  df-om 7663  df-1st 7779  df-2nd 7780  df-tpos 7988  df-undef 8035  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-er 8411  df-map 8530  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-nn 11855  df-2 11917  df-3 11918  df-4 11919  df-5 11920  df-6 11921  df-n0 12115  df-z 12201  df-uz 12463  df-fz 13120  df-struct 16724  df-sets 16741  df-slot 16759  df-ndx 16769  df-base 16785  df-ress 16809  df-plusg 16839  df-mulr 16840  df-sca 16842  df-vsca 16843  df-0g 16970  df-mre 17113  df-mrc 17114  df-acs 17116  df-proset 17826  df-poset 17844  df-plt 17860  df-lub 17876  df-glb 17877  df-join 17878  df-meet 17879  df-p0 17955  df-p1 17956  df-lat 17962  df-clat 18029  df-mgm 18138  df-sgrp 18187  df-mnd 18198  df-submnd 18243  df-grp 18392  df-minusg 18393  df-sbg 18394  df-subg 18564  df-cntz 18735  df-oppg 18762  df-lsm 19049  df-cmn 19196  df-abl 19197  df-mgp 19529  df-ur 19541  df-ring 19588  df-oppr 19665  df-dvdsr 19683  df-unit 19684  df-invr 19714  df-dvr 19725  df-drng 19793  df-lmod 19925  df-lss 19993  df-lsp 20033  df-lvec 20164  df-lsatoms 36753  df-lshyp 36754  df-lcv 36796  df-lfl 36835  df-ldual 36901  df-oposet 36953  df-ol 36955  df-oml 36956  df-covers 37043  df-ats 37044  df-atl 37075  df-cvlat 37099  df-hlat 37128  df-llines 37275  df-lplanes 37276  df-lvols 37277  df-lines 37278  df-psubsp 37280  df-pmap 37281  df-padd 37573  df-lhyp 37765  df-laut 37766  df-ldil 37881  df-ltrn 37882  df-trl 37936  df-tgrp 38520  df-tendo 38532  df-edring 38534  df-dveca 38780  df-disoa 38806  df-dvech 38856  df-dib 38916  df-dic 38950  df-dih 39006  df-doch 39125  df-djh 39172
This theorem is referenced by:  lcfrlem35  39354  lcfrlem36  39355
  Copyright terms: Public domain W3C validator