Proof of Theorem mapdlsm
Step | Hyp | Ref
| Expression |
1 | | mapdlsm.h |
. . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | mapdlsm.c |
. . . . . . . . . . 11
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
3 | | mapdlsm.k |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | 1, 2, 3 | lcdlmod 39533 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(LSubSp‘𝐶) =
(LSubSp‘𝐶) |
6 | 5 | lsssssubg 20135 |
. . . . . . . . . 10
⊢ (𝐶 ∈ LMod →
(LSubSp‘𝐶) ⊆
(SubGrp‘𝐶)) |
7 | 4, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶)) |
8 | | mapdlsm.m |
. . . . . . . . . 10
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
9 | | mapdlsm.u |
. . . . . . . . . 10
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
10 | | mapdlsm.s |
. . . . . . . . . 10
⊢ 𝑆 = (LSubSp‘𝑈) |
11 | | mapdlsm.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
12 | 1, 8, 9, 10, 2, 5,
3, 11 | mapdcl2 39597 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘𝐶)) |
13 | 7, 12 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘𝑋) ∈ (SubGrp‘𝐶)) |
14 | | mapdlsm.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
15 | 1, 8, 9, 10, 2, 5,
3, 14 | mapdcl2 39597 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘𝐶)) |
16 | 7, 15 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘𝑌) ∈ (SubGrp‘𝐶)) |
17 | | mapdlsm.q |
. . . . . . . . 9
⊢ ✚ =
(LSSum‘𝐶) |
18 | 17 | lsmub1 19177 |
. . . . . . . 8
⊢ (((𝑀‘𝑋) ∈ (SubGrp‘𝐶) ∧ (𝑀‘𝑌) ∈ (SubGrp‘𝐶)) → (𝑀‘𝑋) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
19 | 13, 16, 18 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝑋) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
20 | 1, 8, 9, 10, 3, 11 | mapdcl 39594 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑋) ∈ ran 𝑀) |
21 | 1, 8, 9, 10, 3, 14 | mapdcl 39594 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑌) ∈ ran 𝑀) |
22 | 1, 8, 9, 2, 17, 3,
20, 21 | mapdlsmcl 39604 |
. . . . . . . 8
⊢ (𝜑 → ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ∈ ran 𝑀) |
23 | 1, 8, 3, 22 | mapdcnvid2 39598 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
24 | 19, 23 | sseqtrrd 3958 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝑋) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
25 | 1, 8, 9, 10, 3, 22 | mapdcnvcl 39593 |
. . . . . . 7
⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∈ 𝑆) |
26 | 1, 9, 10, 8, 3, 11, 25 | mapdord 39579 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑋) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ 𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
27 | 24, 26 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) |
28 | 17 | lsmub2 19178 |
. . . . . . . 8
⊢ (((𝑀‘𝑋) ∈ (SubGrp‘𝐶) ∧ (𝑀‘𝑌) ∈ (SubGrp‘𝐶)) → (𝑀‘𝑌) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
29 | 13, 16, 28 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝑌) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
30 | 29, 23 | sseqtrrd 3958 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝑌) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
31 | 1, 9, 10, 8, 3, 14, 25 | mapdord 39579 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑌) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
32 | 30, 31 | mpbid 231 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) |
33 | 1, 9, 3 | dvhlmod 39051 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
34 | 10 | lsssssubg 20135 |
. . . . . . . 8
⊢ (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈)) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑈)) |
36 | 35, 11 | sseldd 3918 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (SubGrp‘𝑈)) |
37 | 35, 14 | sseldd 3918 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝑈)) |
38 | 35, 25 | sseldd 3918 |
. . . . . 6
⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∈ (SubGrp‘𝑈)) |
39 | | mapdlsm.p |
. . . . . . 7
⊢ ⊕ =
(LSSum‘𝑈) |
40 | 39 | lsmlub 19185 |
. . . . . 6
⊢ ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈) ∧ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∈ (SubGrp‘𝑈)) → ((𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∧ 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
41 | 36, 37, 38, 40 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → ((𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∧ 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
42 | 27, 32, 41 | mpbi2and 708 |
. . . 4
⊢ (𝜑 → (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) |
43 | 10, 39 | lsmcl 20260 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 ⊕ 𝑌) ∈ 𝑆) |
44 | 33, 11, 14, 43 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝑋 ⊕ 𝑌) ∈ 𝑆) |
45 | 1, 9, 10, 8, 3, 44, 25 | mapdord 39579 |
. . . 4
⊢ (𝜑 → ((𝑀‘(𝑋 ⊕ 𝑌)) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
46 | 42, 45 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
47 | 46, 23 | sseqtrd 3957 |
. 2
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
48 | 39 | lsmub1 19177 |
. . . . 5
⊢ ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → 𝑋 ⊆ (𝑋 ⊕ 𝑌)) |
49 | 36, 37, 48 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ (𝑋 ⊕ 𝑌)) |
50 | 1, 9, 10, 8, 3, 11, 44 | mapdord 39579 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ↔ 𝑋 ⊆ (𝑋 ⊕ 𝑌))) |
51 | 49, 50 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) |
52 | 39 | lsmub2 19178 |
. . . . 5
⊢ ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → 𝑌 ⊆ (𝑋 ⊕ 𝑌)) |
53 | 36, 37, 52 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝑌 ⊆ (𝑋 ⊕ 𝑌)) |
54 | 1, 9, 10, 8, 3, 14, 44 | mapdord 39579 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ↔ 𝑌 ⊆ (𝑋 ⊕ 𝑌))) |
55 | 53, 54 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) |
56 | 1, 8, 9, 10, 2, 5,
3, 44 | mapdcl2 39597 |
. . . . 5
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ∈ (LSubSp‘𝐶)) |
57 | 7, 56 | sseldd 3918 |
. . . 4
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ∈ (SubGrp‘𝐶)) |
58 | 17 | lsmlub 19185 |
. . . 4
⊢ (((𝑀‘𝑋) ∈ (SubGrp‘𝐶) ∧ (𝑀‘𝑌) ∈ (SubGrp‘𝐶) ∧ (𝑀‘(𝑋 ⊕ 𝑌)) ∈ (SubGrp‘𝐶)) → (((𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ∧ (𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) ↔ ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)))) |
59 | 13, 16, 57, 58 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (((𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ∧ (𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) ↔ ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)))) |
60 | 51, 55, 59 | mpbi2and 708 |
. 2
⊢ (𝜑 → ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) |
61 | 47, 60 | eqssd 3934 |
1
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) = ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |