Proof of Theorem mapdlsm
| Step | Hyp | Ref
| Expression |
| 1 | | mapdlsm.h |
. . . . . . . . . . 11
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | mapdlsm.c |
. . . . . . . . . . 11
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| 3 | | mapdlsm.k |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 4 | 1, 2, 3 | lcdlmod 41595 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ LMod) |
| 5 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(LSubSp‘𝐶) =
(LSubSp‘𝐶) |
| 6 | 5 | lsssssubg 20957 |
. . . . . . . . . 10
⊢ (𝐶 ∈ LMod →
(LSubSp‘𝐶) ⊆
(SubGrp‘𝐶)) |
| 7 | 4, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶)) |
| 8 | | mapdlsm.m |
. . . . . . . . . 10
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| 9 | | mapdlsm.u |
. . . . . . . . . 10
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 10 | | mapdlsm.s |
. . . . . . . . . 10
⊢ 𝑆 = (LSubSp‘𝑈) |
| 11 | | mapdlsm.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 12 | 1, 8, 9, 10, 2, 5,
3, 11 | mapdcl2 41659 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑋) ∈ (LSubSp‘𝐶)) |
| 13 | 7, 12 | sseldd 3983 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘𝑋) ∈ (SubGrp‘𝐶)) |
| 14 | | mapdlsm.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| 15 | 1, 8, 9, 10, 2, 5,
3, 14 | mapdcl2 41659 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑌) ∈ (LSubSp‘𝐶)) |
| 16 | 7, 15 | sseldd 3983 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘𝑌) ∈ (SubGrp‘𝐶)) |
| 17 | | mapdlsm.q |
. . . . . . . . 9
⊢ ✚ =
(LSSum‘𝐶) |
| 18 | 17 | lsmub1 19676 |
. . . . . . . 8
⊢ (((𝑀‘𝑋) ∈ (SubGrp‘𝐶) ∧ (𝑀‘𝑌) ∈ (SubGrp‘𝐶)) → (𝑀‘𝑋) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
| 19 | 13, 16, 18 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝑋) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
| 20 | 1, 8, 9, 10, 3, 11 | mapdcl 41656 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑋) ∈ ran 𝑀) |
| 21 | 1, 8, 9, 10, 3, 14 | mapdcl 41656 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑌) ∈ ran 𝑀) |
| 22 | 1, 8, 9, 2, 17, 3,
20, 21 | mapdlsmcl 41666 |
. . . . . . . 8
⊢ (𝜑 → ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ∈ ran 𝑀) |
| 23 | 1, 8, 3, 22 | mapdcnvid2 41660 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) = ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
| 24 | 19, 23 | sseqtrrd 4020 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝑋) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 25 | 1, 8, 9, 10, 3, 22 | mapdcnvcl 41655 |
. . . . . . 7
⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∈ 𝑆) |
| 26 | 1, 9, 10, 8, 3, 11, 25 | mapdord 41641 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑋) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ 𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 27 | 24, 26 | mpbid 232 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) |
| 28 | 17 | lsmub2 19677 |
. . . . . . . 8
⊢ (((𝑀‘𝑋) ∈ (SubGrp‘𝐶) ∧ (𝑀‘𝑌) ∈ (SubGrp‘𝐶)) → (𝑀‘𝑌) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
| 29 | 13, 16, 28 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝑌) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
| 30 | 29, 23 | sseqtrrd 4020 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝑌) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 31 | 1, 9, 10, 8, 3, 14, 25 | mapdord 41641 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑌) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 32 | 30, 31 | mpbid 232 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) |
| 33 | 1, 9, 3 | dvhlmod 41113 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 34 | 10 | lsssssubg 20957 |
. . . . . . . 8
⊢ (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈)) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑈)) |
| 36 | 35, 11 | sseldd 3983 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (SubGrp‘𝑈)) |
| 37 | 35, 14 | sseldd 3983 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝑈)) |
| 38 | 35, 25 | sseldd 3983 |
. . . . . 6
⊢ (𝜑 → (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∈ (SubGrp‘𝑈)) |
| 39 | | mapdlsm.p |
. . . . . . 7
⊢ ⊕ =
(LSSum‘𝑈) |
| 40 | 39 | lsmlub 19683 |
. . . . . 6
⊢ ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈) ∧ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∈ (SubGrp‘𝑈)) → ((𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∧ 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 41 | 36, 37, 38, 40 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 → ((𝑋 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))) ∧ 𝑌 ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 42 | 27, 32, 41 | mpbi2and 712 |
. . . 4
⊢ (𝜑 → (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) |
| 43 | 10, 39 | lsmcl 21083 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 ⊕ 𝑌) ∈ 𝑆) |
| 44 | 33, 11, 14, 43 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 → (𝑋 ⊕ 𝑌) ∈ 𝑆) |
| 45 | 1, 9, 10, 8, 3, 44, 25 | mapdord 41641 |
. . . 4
⊢ (𝜑 → ((𝑀‘(𝑋 ⊕ 𝑌)) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌)))) ↔ (𝑋 ⊕ 𝑌) ⊆ (◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 46 | 42, 45 | mpbird 257 |
. . 3
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ⊆ (𝑀‘(◡𝑀‘((𝑀‘𝑋) ✚ (𝑀‘𝑌))))) |
| 47 | 46, 23 | sseqtrd 4019 |
. 2
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ⊆ ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |
| 48 | 39 | lsmub1 19676 |
. . . . 5
⊢ ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → 𝑋 ⊆ (𝑋 ⊕ 𝑌)) |
| 49 | 36, 37, 48 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ (𝑋 ⊕ 𝑌)) |
| 50 | 1, 9, 10, 8, 3, 11, 44 | mapdord 41641 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ↔ 𝑋 ⊆ (𝑋 ⊕ 𝑌))) |
| 51 | 49, 50 | mpbird 257 |
. . 3
⊢ (𝜑 → (𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) |
| 52 | 39 | lsmub2 19677 |
. . . . 5
⊢ ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → 𝑌 ⊆ (𝑋 ⊕ 𝑌)) |
| 53 | 36, 37, 52 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑌 ⊆ (𝑋 ⊕ 𝑌)) |
| 54 | 1, 9, 10, 8, 3, 14, 44 | mapdord 41641 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ↔ 𝑌 ⊆ (𝑋 ⊕ 𝑌))) |
| 55 | 53, 54 | mpbird 257 |
. . 3
⊢ (𝜑 → (𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) |
| 56 | 1, 8, 9, 10, 2, 5,
3, 44 | mapdcl2 41659 |
. . . . 5
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ∈ (LSubSp‘𝐶)) |
| 57 | 7, 56 | sseldd 3983 |
. . . 4
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) ∈ (SubGrp‘𝐶)) |
| 58 | 17 | lsmlub 19683 |
. . . 4
⊢ (((𝑀‘𝑋) ∈ (SubGrp‘𝐶) ∧ (𝑀‘𝑌) ∈ (SubGrp‘𝐶) ∧ (𝑀‘(𝑋 ⊕ 𝑌)) ∈ (SubGrp‘𝐶)) → (((𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ∧ (𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) ↔ ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)))) |
| 59 | 13, 16, 57, 58 | syl3anc 1372 |
. . 3
⊢ (𝜑 → (((𝑀‘𝑋) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)) ∧ (𝑀‘𝑌) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) ↔ ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ⊕ 𝑌)))) |
| 60 | 51, 55, 59 | mpbi2and 712 |
. 2
⊢ (𝜑 → ((𝑀‘𝑋) ✚ (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ⊕ 𝑌))) |
| 61 | 47, 60 | eqssd 4000 |
1
⊢ (𝜑 → (𝑀‘(𝑋 ⊕ 𝑌)) = ((𝑀‘𝑋) ✚ (𝑀‘𝑌))) |