Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minveclem4c | Structured version Visualization version GIF version |
Description: Lemma for minvec 24149. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
Ref | Expression |
---|---|
minveclem4c | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
2 | minvec.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑈) | |
3 | minvec.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
4 | minvec.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑈) | |
5 | minvec.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
6 | minvec.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
7 | minvec.w | . . . . 5 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
8 | minvec.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
9 | minvec.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑈) | |
10 | minvec.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | minveclem1 24137 | . . . 4 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
12 | 11 | simp1d 1139 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
13 | 11 | simp2d 1140 | . . 3 ⊢ (𝜑 → 𝑅 ≠ ∅) |
14 | 0re 10694 | . . . 4 ⊢ 0 ∈ ℝ | |
15 | 11 | simp3d 1141 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
16 | breq1 5039 | . . . . . 6 ⊢ (𝑦 = 0 → (𝑦 ≤ 𝑤 ↔ 0 ≤ 𝑤)) | |
17 | 16 | ralbidv 3126 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
18 | 17 | rspcev 3543 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
19 | 14, 15, 18 | sylancr 590 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
20 | infrecl 11672 | . . 3 ⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ) | |
21 | 12, 13, 19, 20 | syl3anc 1368 | . 2 ⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ) |
22 | 1, 21 | eqeltrid 2856 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 ⊆ wss 3860 ∅c0 4227 class class class wbr 5036 ↦ cmpt 5116 ran crn 5529 ‘cfv 6340 (class class class)co 7156 infcinf 8951 ℝcr 10587 0cc0 10588 < clt 10726 ≤ cle 10727 Basecbs 16554 ↾s cress 16555 TopOpenctopn 16766 -gcsg 18184 LSubSpclss 19784 normcnm 23291 ℂPreHilccph 23880 CMetSpccms 24045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-n0 11948 df-z 12034 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-0g 16786 df-topgen 16788 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 df-minusg 18186 df-sbg 18187 df-lmod 19717 df-lss 19785 df-psmet 20171 df-xmet 20172 df-met 20173 df-bl 20174 df-mopn 20175 df-top 21607 df-topon 21624 df-topsp 21646 df-bases 21659 df-xms 23035 df-ms 23036 df-nm 23297 df-ngp 23298 df-nlm 23301 df-cph 23882 |
This theorem is referenced by: minveclem2 24139 minveclem3b 24141 minveclem4 24145 |
Copyright terms: Public domain | W3C validator |