![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem4c | Structured version Visualization version GIF version |
Description: Lemma for minvec 25484. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
Ref | Expression |
---|---|
minveclem4c | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
2 | minvec.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑈) | |
3 | minvec.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
4 | minvec.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑈) | |
5 | minvec.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
6 | minvec.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
7 | minvec.w | . . . . 5 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
8 | minvec.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
9 | minvec.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑈) | |
10 | minvec.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | minveclem1 25472 | . . . 4 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
12 | 11 | simp1d 1141 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
13 | 11 | simp2d 1142 | . . 3 ⊢ (𝜑 → 𝑅 ≠ ∅) |
14 | 0re 11261 | . . . 4 ⊢ 0 ∈ ℝ | |
15 | 11 | simp3d 1143 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
16 | breq1 5151 | . . . . . 6 ⊢ (𝑦 = 0 → (𝑦 ≤ 𝑤 ↔ 0 ≤ 𝑤)) | |
17 | 16 | ralbidv 3176 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
18 | 17 | rspcev 3622 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
19 | 14, 15, 18 | sylancr 587 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
20 | infrecl 12248 | . . 3 ⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ) | |
21 | 12, 13, 19, 20 | syl3anc 1370 | . 2 ⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ) |
22 | 1, 21 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ∅c0 4339 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 infcinf 9479 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 Basecbs 17245 ↾s cress 17274 TopOpenctopn 17468 -gcsg 18966 LSubSpclss 20947 normcnm 24605 ℂPreHilccph 25214 CMetSpccms 25380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-0g 17488 df-topgen 17490 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-lmod 20877 df-lss 20948 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-xms 24346 df-ms 24347 df-nm 24611 df-ngp 24612 df-nlm 24615 df-cph 25216 |
This theorem is referenced by: minveclem2 25474 minveclem3b 25476 minveclem4 25480 |
Copyright terms: Public domain | W3C validator |