MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4c Structured version   Visualization version   GIF version

Theorem minveclem4c 25382
Description: Lemma for minvec 25393. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minveclem4c (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝑆

Proof of Theorem minveclem4c
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.s . 2 𝑆 = inf(𝑅, ℝ, < )
2 minvec.x . . . . 5 𝑋 = (Base‘𝑈)
3 minvec.m . . . . 5 = (-g𝑈)
4 minvec.n . . . . 5 𝑁 = (norm‘𝑈)
5 minvec.u . . . . 5 (𝜑𝑈 ∈ ℂPreHil)
6 minvec.y . . . . 5 (𝜑𝑌 ∈ (LSubSp‘𝑈))
7 minvec.w . . . . 5 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
8 minvec.a . . . . 5 (𝜑𝐴𝑋)
9 minvec.j . . . . 5 𝐽 = (TopOpen‘𝑈)
10 minvec.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
112, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 25381 . . . 4 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1211simp1d 1142 . . 3 (𝜑𝑅 ⊆ ℝ)
1311simp2d 1143 . . 3 (𝜑𝑅 ≠ ∅)
14 0re 11242 . . . 4 0 ∈ ℝ
1511simp3d 1144 . . . 4 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
16 breq1 5127 . . . . . 6 (𝑦 = 0 → (𝑦𝑤 ↔ 0 ≤ 𝑤))
1716ralbidv 3164 . . . . 5 (𝑦 = 0 → (∀𝑤𝑅 𝑦𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
1817rspcev 3606 . . . 4 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤)
1914, 15, 18sylancr 587 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤)
20 infrecl 12229 . . 3 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2112, 13, 19, 20syl3anc 1373 . 2 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
221, 21eqeltrid 2839 1 (𝜑𝑆 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  infcinf 9458  cr 11133  0cc0 11134   < clt 11274  cle 11275  Basecbs 17233  s cress 17256  TopOpenctopn 17440  -gcsg 18923  LSubSpclss 20893  normcnm 24520  ℂPreHilccph 25123  CMetSpccms 25289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-0g 17460  df-topgen 17462  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-lmod 20824  df-lss 20894  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-xms 24264  df-ms 24265  df-nm 24526  df-ngp 24527  df-nlm 24530  df-cph 25125
This theorem is referenced by:  minveclem2  25383  minveclem3b  25385  minveclem4  25389
  Copyright terms: Public domain W3C validator