| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem4c | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25352. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| Ref | Expression |
|---|---|
| minveclem4c | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
| 2 | minvec.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑈) | |
| 3 | minvec.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
| 4 | minvec.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑈) | |
| 5 | minvec.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 6 | minvec.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 7 | minvec.w | . . . . 5 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
| 8 | minvec.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | minvec.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑈) | |
| 10 | minvec.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | minveclem1 25340 | . . . 4 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 12 | 11 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
| 13 | 11 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝑅 ≠ ∅) |
| 14 | 0re 11136 | . . . 4 ⊢ 0 ∈ ℝ | |
| 15 | 11 | simp3d 1144 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 16 | breq1 5098 | . . . . . 6 ⊢ (𝑦 = 0 → (𝑦 ≤ 𝑤 ↔ 0 ≤ 𝑤)) | |
| 17 | 16 | ralbidv 3152 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 18 | 17 | rspcev 3579 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
| 19 | 14, 15, 18 | sylancr 587 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
| 20 | infrecl 12125 | . . 3 ⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ) | |
| 21 | 12, 13, 19, 20 | syl3anc 1373 | . 2 ⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ) |
| 22 | 1, 21 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∅c0 4286 class class class wbr 5095 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 (class class class)co 7353 infcinf 9350 ℝcr 11027 0cc0 11028 < clt 11168 ≤ cle 11169 Basecbs 17138 ↾s cress 17159 TopOpenctopn 17343 -gcsg 18832 LSubSpclss 20852 normcnm 24480 ℂPreHilccph 25082 CMetSpccms 25248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-0g 17363 df-topgen 17365 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-lmod 20783 df-lss 20853 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-xms 24224 df-ms 24225 df-nm 24486 df-ngp 24487 df-nlm 24490 df-cph 25084 |
| This theorem is referenced by: minveclem2 25342 minveclem3b 25344 minveclem4 25348 |
| Copyright terms: Public domain | W3C validator |