MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4c Structured version   Visualization version   GIF version

Theorem minveclem4c 24924
Description: Lemma for minvec 24935. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minveclem4c (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝑆

Proof of Theorem minveclem4c
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.s . 2 𝑆 = inf(𝑅, ℝ, < )
2 minvec.x . . . . 5 𝑋 = (Base‘𝑈)
3 minvec.m . . . . 5 = (-g𝑈)
4 minvec.n . . . . 5 𝑁 = (norm‘𝑈)
5 minvec.u . . . . 5 (𝜑𝑈 ∈ ℂPreHil)
6 minvec.y . . . . 5 (𝜑𝑌 ∈ (LSubSp‘𝑈))
7 minvec.w . . . . 5 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
8 minvec.a . . . . 5 (𝜑𝐴𝑋)
9 minvec.j . . . . 5 𝐽 = (TopOpen‘𝑈)
10 minvec.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
112, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 24923 . . . 4 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1211simp1d 1143 . . 3 (𝜑𝑅 ⊆ ℝ)
1311simp2d 1144 . . 3 (𝜑𝑅 ≠ ∅)
14 0re 11212 . . . 4 0 ∈ ℝ
1511simp3d 1145 . . . 4 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
16 breq1 5150 . . . . . 6 (𝑦 = 0 → (𝑦𝑤 ↔ 0 ≤ 𝑤))
1716ralbidv 3178 . . . . 5 (𝑦 = 0 → (∀𝑤𝑅 𝑦𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
1817rspcev 3612 . . . 4 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤)
1914, 15, 18sylancr 588 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤)
20 infrecl 12192 . . 3 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2112, 13, 19, 20syl3anc 1372 . 2 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
221, 21eqeltrid 2838 1 (𝜑𝑆 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3947  c0 4321   class class class wbr 5147  cmpt 5230  ran crn 5676  cfv 6540  (class class class)co 7404  infcinf 9432  cr 11105  0cc0 11106   < clt 11244  cle 11245  Basecbs 17140  s cress 17169  TopOpenctopn 17363  -gcsg 18817  LSubSpclss 20530  normcnm 24067  ℂPreHilccph 24665  CMetSpccms 24831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-0g 17383  df-topgen 17385  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-lmod 20461  df-lss 20531  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-xms 23808  df-ms 23809  df-nm 24073  df-ngp 24074  df-nlm 24077  df-cph 24667
This theorem is referenced by:  minveclem2  24925  minveclem3b  24927  minveclem4  24931
  Copyright terms: Public domain W3C validator