Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minveclem4c | Structured version Visualization version GIF version |
Description: Lemma for minvec 24628. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
minvec.m | ⊢ − = (-g‘𝑈) |
minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
Ref | Expression |
---|---|
minveclem4c | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
2 | minvec.x | . . . . 5 ⊢ 𝑋 = (Base‘𝑈) | |
3 | minvec.m | . . . . 5 ⊢ − = (-g‘𝑈) | |
4 | minvec.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑈) | |
5 | minvec.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
6 | minvec.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
7 | minvec.w | . . . . 5 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
8 | minvec.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
9 | minvec.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑈) | |
10 | minvec.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | minveclem1 24616 | . . . 4 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
12 | 11 | simp1d 1140 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
13 | 11 | simp2d 1141 | . . 3 ⊢ (𝜑 → 𝑅 ≠ ∅) |
14 | 0re 11005 | . . . 4 ⊢ 0 ∈ ℝ | |
15 | 11 | simp3d 1142 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
16 | breq1 5080 | . . . . . 6 ⊢ (𝑦 = 0 → (𝑦 ≤ 𝑤 ↔ 0 ≤ 𝑤)) | |
17 | 16 | ralbidv 3168 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
18 | 17 | rspcev 3563 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
19 | 14, 15, 18 | sylancr 586 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
20 | infrecl 11985 | . . 3 ⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ) | |
21 | 12, 13, 19, 20 | syl3anc 1369 | . 2 ⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ) |
22 | 1, 21 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3889 ∅c0 4259 class class class wbr 5077 ↦ cmpt 5160 ran crn 5592 ‘cfv 6447 (class class class)co 7295 infcinf 9228 ℝcr 10898 0cc0 10899 < clt 11037 ≤ cle 11038 Basecbs 16940 ↾s cress 16969 TopOpenctopn 17160 -gcsg 18607 LSubSpclss 20221 normcnm 23760 ℂPreHilccph 24358 CMetSpccms 24524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-q 12717 df-rp 12759 df-xneg 12876 df-xadd 12877 df-xmul 12878 df-0g 17180 df-topgen 17182 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-grp 18608 df-minusg 18609 df-sbg 18610 df-lmod 20153 df-lss 20222 df-psmet 20617 df-xmet 20618 df-met 20619 df-bl 20620 df-mopn 20621 df-top 22071 df-topon 22088 df-topsp 22110 df-bases 22124 df-xms 23501 df-ms 23502 df-nm 23766 df-ngp 23767 df-nlm 23770 df-cph 24360 |
This theorem is referenced by: minveclem2 24618 minveclem3b 24620 minveclem4 24624 |
Copyright terms: Public domain | W3C validator |