![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnncvsabsnegdemo | Structured version Visualization version GIF version |
Description: Derive the absolute value of a negative complex number absneg 15277 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnncvsabsnegdemo | ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldnm 24783 | . . . 4 ⊢ abs = (norm‘ℂfld) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → abs = (norm‘ℂfld)) |
3 | cnfldneg 21383 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
4 | 3 | eqcomd 2732 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 = ((invg‘ℂfld)‘𝐴)) |
5 | 2, 4 | fveq12d 6900 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = ((norm‘ℂfld)‘((invg‘ℂfld)‘𝐴))) |
6 | cnngp 24784 | . . 3 ⊢ ℂfld ∈ NrmGrp | |
7 | cnfldbas 21343 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
8 | eqid 2726 | . . . 4 ⊢ (norm‘ℂfld) = (norm‘ℂfld) | |
9 | eqid 2726 | . . . 4 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
10 | 7, 8, 9 | nminv 24618 | . . 3 ⊢ ((ℂfld ∈ NrmGrp ∧ 𝐴 ∈ ℂ) → ((norm‘ℂfld)‘((invg‘ℂfld)‘𝐴)) = ((norm‘ℂfld)‘𝐴)) |
11 | 6, 10 | mpan 688 | . 2 ⊢ (𝐴 ∈ ℂ → ((norm‘ℂfld)‘((invg‘ℂfld)‘𝐴)) = ((norm‘ℂfld)‘𝐴)) |
12 | 1 | eqcomi 2735 | . . . 4 ⊢ (norm‘ℂfld) = abs |
13 | 12 | fveq1i 6894 | . . 3 ⊢ ((norm‘ℂfld)‘𝐴) = (abs‘𝐴) |
14 | 13 | a1i 11 | . 2 ⊢ (𝐴 ∈ ℂ → ((norm‘ℂfld)‘𝐴) = (abs‘𝐴)) |
15 | 5, 11, 14 | 3eqtrd 2770 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6546 ℂcc 11147 -cneg 11486 abscabs 15234 invgcminusg 18924 ℂfldccnfld 21339 normcnm 24573 NrmGrpcngp 24574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-fz 13533 df-seq 14016 df-exp 14076 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-plusg 17274 df-mulr 17275 df-starv 17276 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-rest 17432 df-topn 17433 df-0g 17451 df-topgen 17453 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 df-sbg 18928 df-cmn 19776 df-mgp 20114 df-ring 20214 df-cring 20215 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-cnfld 21340 df-top 22884 df-topon 22901 df-topsp 22923 df-bases 22937 df-xms 24314 df-ms 24315 df-nm 24579 df-ngp 24580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |