![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmsca | Structured version Visualization version GIF version |
Description: The ring of scalars of a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmsca | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6856 | . . . . 5 ⊢ (ringLMod‘𝑅) ∈ V | |
2 | eqid 2733 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
3 | eqid 2733 | . . . . . 6 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
4 | 2, 3 | pwssca 17383 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼))) |
5 | 1, 4 | mpan 689 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼))) |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼))) |
7 | fvex 6856 | . . . 4 ⊢ (Base‘𝐹) ∈ V | |
8 | eqid 2733 | . . . . 5 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) | |
9 | eqid 2733 | . . . . 5 ⊢ (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) | |
10 | 8, 9 | resssca 17229 | . . . 4 ⊢ ((Base‘𝐹) ∈ V → (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))) |
11 | 7, 10 | ax-mp 5 | . . 3 ⊢ (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))) |
12 | 6, 11 | eqtrdi 2789 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))) |
13 | rlmsca 20685 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
14 | 13 | adantr 482 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
15 | frlmval.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
16 | eqid 2733 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
17 | 15, 16 | frlmpws 21172 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))) |
18 | 17 | fveq2d 6847 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝐹) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))) |
19 | 12, 14, 18 | 3eqtr4d 2783 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ‘cfv 6497 (class class class)co 7358 Basecbs 17088 ↾s cress 17117 Scalarcsca 17141 ↑s cpws 17333 ringLModcrglmod 20646 freeLMod cfrlm 21168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-sca 17154 df-vsca 17155 df-ip 17156 df-tset 17157 df-ple 17158 df-ds 17160 df-hom 17162 df-cco 17163 df-prds 17334 df-pws 17336 df-sra 20649 df-rgmod 20650 df-dsmm 21154 df-frlm 21169 |
This theorem is referenced by: frlmlvec 21183 frlmvscavalb 21192 frlmvplusgscavalb 21193 frlmphl 21203 uvcresum 21215 frlmssuvc1 21216 frlmssuvc2 21217 frlmsslsp 21218 frlmlbs 21219 frlmup1 21220 frlmisfrlm 21270 matsca2 21785 rrxcph 24772 lindsdom 36118 lindsenlbs 36119 matunitlindflem1 36120 matunitlindflem2 36121 frlmsnic 40771 prjspnerlem 40998 prjspnvs 41001 prjspner1 41007 0prjspn 41009 mnringscad 42590 mnringscadOLD 42591 mnringlmodd 42594 zlmodzxzlmod 46516 aacllem 47334 |
Copyright terms: Public domain | W3C validator |