MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsca Structured version   Visualization version   GIF version

Theorem frlmsca 21695
Description: The ring of scalars of a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmsca ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘𝐹))

Proof of Theorem frlmsca
StepHypRef Expression
1 fvex 6853 . . . . 5 (ringLMod‘𝑅) ∈ V
2 eqid 2729 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
3 eqid 2729 . . . . . 6 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
42, 3pwssca 17435 . . . . 5 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)))
51, 4mpan 690 . . . 4 (𝐼𝑊 → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)))
65adantl 481 . . 3 ((𝑅𝑉𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)))
7 fvex 6853 . . . 4 (Base‘𝐹) ∈ V
8 eqid 2729 . . . . 5 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))
9 eqid 2729 . . . . 5 (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘((ringLMod‘𝑅) ↑s 𝐼))
108, 9resssca 17282 . . . 4 ((Base‘𝐹) ∈ V → (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
117, 10ax-mp 5 . . 3 (Scalar‘((ringLMod‘𝑅) ↑s 𝐼)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
126, 11eqtrdi 2780 . 2 ((𝑅𝑉𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
13 rlmsca 21137 . . 3 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
1413adantr 480 . 2 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
15 frlmval.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
16 eqid 2729 . . . 4 (Base‘𝐹) = (Base‘𝐹)
1715, 16frlmpws 21692 . . 3 ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
1817fveq2d 6844 . 2 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝐹) = (Scalar‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
1912, 14, 183eqtr4d 2774 1 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  Scalarcsca 17199  s cpws 17385  ringLModcrglmod 21111   freeLMod cfrlm 21688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-prds 17386  df-pws 17388  df-sra 21112  df-rgmod 21113  df-dsmm 21674  df-frlm 21689
This theorem is referenced by:  frlmlvec  21703  frlmvscavalb  21712  frlmvplusgscavalb  21713  frlmphl  21723  uvcresum  21735  frlmssuvc1  21736  frlmssuvc2  21737  frlmsslsp  21738  frlmlbs  21739  frlmup1  21740  frlmisfrlm  21790  matsca2  22340  rrxcph  25325  lindsdom  37601  lindsenlbs  37602  matunitlindflem1  37603  matunitlindflem2  37604  frlmsnic  42521  prjspnerlem  42598  prjspnvs  42601  prjspner1  42607  0prjspn  42609  mnringscad  44206  mnringlmodd  44208  zlmodzxzlmod  48335  aacllem  49783
  Copyright terms: Public domain W3C validator